【題目】已知函數(shù).

(1)當時,求證:;

(2)當時,若不等式恒成立,求實數(shù)的取值范圍;

(3)若,證明.

【答案】(1)證明見解析;(2);(3)證明見解析.

【解析】

1)當時,,根據(jù)導數(shù)可得函數(shù)的最小值為,從而可得結(jié)論成立;(2)由條件得,令,則.然后分為兩種情況進行討論,可得所求范圍.(3)由(2)得當時,.故要證不等式成立,只需證,只需證明,只需證 ,然后構(gòu)造函數(shù)并利用函數(shù)的單調(diào)性可得結(jié)論成立.

(1)當時,,

,

時,;當時,

上單調(diào)遞減,在上單調(diào)遞增,

,

.

(2)由條件得,

,則.

①當時,在上,單調(diào)遞增,

,即,

上為增函數(shù),

時滿足條件.

②當時,令,解得,在上,單調(diào)遞減,

∴當時,有,即 ,

上為減函數(shù),

,不合題意.

綜上實數(shù)的取值范圍為

(3)由(2)得,當,時,,即,

要證不等式

只需證明,

只需證明,

只需證 ,

設(shè)

,

∴當時,恒成立,故上單調(diào)遞增,

,

恒成立.

∴原不等式成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個同學分別拋擲1枚質(zhì)地均勻的骰子.

1)求他們拋擲點數(shù)相同的概率;

2)求他們拋擲骰子的點數(shù)之和是3的倍數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:曲線稱為橢圓倒橢圓.已知橢圓,它的倒橢圓

1)寫出倒橢圓的一條對稱軸、一個對稱中心;并寫出其上動點橫坐標x的取值范圍.

2)過倒橢圓上的點P,作直線PA垂直于x軸且垂足為點A,作直線PB垂直于y軸且垂足為點B,求證:直線AB與橢圓只有一個公共點.

3)是否存在直線l與橢圓無公共點,且與倒橢圓無公共點?若存在,請給出滿足條件的直線l,并說明理由;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過圓錐軸的截面為等腰直角三角形,為底面圓周上一點,已知,圓錐體積為,點為底面圓的圓心

1)求該圓錐的全面積

2)求異面直線所成角的大小(結(jié)果用反三角函數(shù)表示)

3)求點到平面的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確命題的個數(shù)是( )

①命題“函數(shù)的最小值不為”是假命題;

②“”是“”的必要不充分條件;③若為假命題,則, 均為假命題;

④若命題, ,則, ;

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)滿足,的虛部為2,

1)求復數(shù);

2)設(shè)在復平面上對應(yīng)點分別為,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,且

為等邊三角形,平面平面;點分別為的中點.

(1)證明:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是等差數(shù)列,且公差,首項,且的等比中項.

(1)求數(shù)列的通項公式;

(2)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABED中,AB//DE,ABBE,點C在AB上,且ABCD,AC=BC=CD=2,現(xiàn)將△ACD沿CD折起,使點A到達點P的位置,且PE.

(1)求證:平面PBC 平面DEBC;

(2)求三棱錐P-EBC的體積.

查看答案和解析>>

同步練習冊答案