【題目】已知△ABC的三個(gè)頂點(diǎn)分別為A(﹣3,0),B2,1),C(﹣2,3),試求:

1)邊AC所在直線的方程;

2BC邊上的中線AD所在直線的方程;

3BC邊上的高AE所在直線的方程.

【答案】13xy+9022x3y+6032xy+60

【解析】

1)利用直線方程的兩點(diǎn)式,即可求解;

2)求出BC邊上的中點(diǎn)D坐標(biāo),利用兩點(diǎn)坐標(biāo),即可求出直線方程;

(3)求出直線的斜率,即可得到高的斜率,利用直線方程的點(diǎn)斜式,即可求解.

1)∵A(﹣3,0),C(﹣2,3),

故邊AC所在直線的方程為:,

3xy+90,

2BC邊上的中點(diǎn)D02),

BC邊上的中線AD所在直線的方程為

2x3y+60,

3BC邊斜率k,

BC邊上的高AE的斜率k2,

BC邊上的高AE所在直線的方程為y2x+3),

2xy+60.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人承攬一項(xiàng)業(yè)務(wù),需做文字標(biāo)牌4個(gè),繪畫(huà)標(biāo)牌5個(gè),現(xiàn)有兩種規(guī)格的原料,甲種規(guī)格每張3m2,可做文字標(biāo)牌1個(gè),繪畫(huà)標(biāo)牌2個(gè),乙種規(guī)格每張2m2,可做文字標(biāo)牌2個(gè),繪畫(huà)標(biāo)牌1個(gè),求兩種規(guī)格的原料各用多少?gòu)垼拍苁箍偟挠昧厦娣e最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,己知圓,且圓被直線截得的弦長(zhǎng)為2.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若圓的切線軸和軸上的截距相等,求切線的方程;

(3)若圓上存在點(diǎn),由點(diǎn)向圓引一條切線,切點(diǎn)為,且滿(mǎn)足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)研機(jī)構(gòu),對(duì)本地歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,將生活習(xí)慣符合低碳觀念的稱(chēng)為“低碳族”,否則稱(chēng)為“非低碳族”,結(jié)果顯示,有人為“低碳族”,該人的年齡情況對(duì)應(yīng)的頻率分布直方圖如圖.

1)根據(jù)頻率分布直方圖,估計(jì)這名“低碳族”年齡的平均值,中位數(shù);

2)若在“低碳族”且年齡在、的兩組人群中,用分層抽樣的方法抽取人,試估算每個(gè)年齡段應(yīng)各抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,曲線的參數(shù)方程為(其中為參數(shù))曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線和曲線的極坐標(biāo)方程;

2)射線:依次與曲線和曲線交于、兩點(diǎn),射線:依次與曲線和曲線交于、兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P到兩定點(diǎn)M(﹣3,0),N30)的距離滿(mǎn)足|PM|2|PN|.

1)求證:點(diǎn)P的軌跡為圓;

2)記(1)中軌跡為⊙C,過(guò)定點(diǎn)(0,1)的直線l與⊙C交于A,B兩點(diǎn),求△ABC面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。

(1)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若存在與函數(shù)的圖象都相切的直線,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是平行四邊形,∠ADC60°ADAC2,OAC的中點(diǎn),PO⊥平面ABCDPO4,MPD的中點(diǎn).

1)證明:MO∥平面PAB;

2)求直線AM與平面ABCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案