【題目】在平面直角坐標系中,曲線C的參數(shù)方程為為參數(shù),.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的圾坐標方,且直線l與曲線C相交于AB兩點.

1)求曲線C的普通方程和l的直角坐標方程;

2)若,點滿足,求此時r的值.

【答案】1,2

【解析】

1)曲線C的普通方程為, ,代入直線l的極坐標方程中,可得到l的直角坐標方程.

2)寫出l的參數(shù)方程可設(shè)為t為參數(shù)),將l的參數(shù)方程與曲線C的普通方程聯(lián)立,得,設(shè)點A、B對應(yīng)的參數(shù)分別為、,則由韋達定理得,代入可得所求值.

1)曲線C的普通方程為,

代入直線l的極坐標方程中,得到l的直角坐標方程為.

2)點在直線l上,則l的參數(shù)方程可設(shè)為t為參數(shù)),

l的參數(shù)方程與曲線C的普通方程聯(lián)立,得,,

設(shè)點AB對應(yīng)的參數(shù)分別為、,則由韋達定理得,且當時,.

所以,得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年全球爆發(fā)新冠肺炎,人感染了新冠肺炎病毒后常見的呼吸道癥狀有:發(fā)熱、咳嗽、氣促和呼吸困難等,嚴重時會危及生命.隨著疫情的發(fā)展,自202025日起,武漢大面積的爆發(fā)新冠肺炎,政府為了及時收治輕癥感染的群眾,逐步建立起了14家方艙醫(yī)院,其中武漢體育中心方艙醫(yī)院從212日開艙至38日閉倉,累計收治輕癥患者1056人.據(jù)部分統(tǒng)計該方艙醫(yī)院從226日至32日輕癥患者治愈出倉人數(shù)的頻數(shù)表與散點圖如下:

日期

2.26

2.27

2.28

2.29

3.1

3.2

序號

1

2

3

4

5

6

出倉人數(shù)

3

8

17

31

68

168

根據(jù)散點圖和表中數(shù)據(jù),某研究人員對出倉人數(shù)與日期序號進行了擬合分析.從散點圖觀察可得,研究人員分別用兩種函數(shù)①分析其擬合效果.其相關(guān)指數(shù)可以判斷擬合效果,R2越大擬合效果越好.已知的相關(guān)指數(shù)為

1)試根據(jù)相關(guān)指數(shù)判斷.上述兩類函數(shù),哪一類函數(shù)的擬合效果更好?(注:相關(guān)系數(shù)與相關(guān)指數(shù)R2滿足,參考數(shù)據(jù)表中

2根據(jù)(1)中結(jié)論,求擬合效果更好的函數(shù)解析式;(結(jié)果保留小數(shù)點后三位)

33日實際總出倉人數(shù)為216人,按①中的回歸模型計算,差距有多少人?

(附:對于一組數(shù)據(jù),其回歸直線為

相關(guān)系數(shù)

參考數(shù)據(jù):

3.5

49.17

15.17

3.13

894.83

19666.83

10.55

13.56

3957083

,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1,求函數(shù)的單調(diào)區(qū)間:

2)對于任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.某大學(xué)為了解在校本科生對參加某項社會實踐活動的意向,擬采用分層抽樣的方法從該校四個年級的本科生中抽取一個容量為300的樣本進行調(diào)查.已知該校一、二、三、四年級本科生人數(shù)之比為6554,則應(yīng)從一年級中抽取90名學(xué)生

B.10件產(chǎn)品中有7件正品,3件次品,從中任取4件,則恰好取到1件次品的概率為

C.已知變量xy正相關(guān),且由觀測數(shù)據(jù)算得=3,=35,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是=0.4x+2.3

D.從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,至少有一個黑球與至少有一個紅球是兩個互斥而不對立的事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點分別是雙曲線的左、右焦點,且相交于點().

(1)求橢圓的標準方程;

(2)設(shè)直線與橢圓交于A,B兩點,以線段AB為直徑的圓是否恒過定點?若恒過定點,求出該定點;若不恒過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了更好地貫徹黨的五育并舉的教育方針,某市要對全市中小學(xué)生體能達標情況進行了解,決定通過隨機抽樣選擇幾個樣本校對學(xué)生進行體能達標測試,并規(guī)定測試成績低于60分為不合格,否則為合格,若樣本校學(xué)生不合格人數(shù)不超過其總?cè)藬?shù)的5%,則該樣本校體能達標為合格.已知某樣本校共有1000名學(xué)生,現(xiàn)從中隨機抽取40名學(xué)生參加體能達標測試,首先將這40名學(xué)生隨機分為甲、乙兩組,其中甲乙兩組學(xué)生人數(shù)的比為3:2,測試后,兩組各自的成績統(tǒng)計如下:甲組的平均成績?yōu)?/span>70,方差為16,乙組的平均成績?yōu)?/span>80,方差為36.

1)估計該樣本校學(xué)生體能測試的平均成績;

2)求該樣本校40名學(xué)生測試成績的標準差s

3)假設(shè)該樣本校體能達標測試成績服從正態(tài)分布,用樣本平均數(shù)作為的估計值,用樣本標準差s作為的估計值,利用估計值估計該樣本校學(xué)生體能達標測試是否合格?

(注:1.本題所有數(shù)據(jù)的最后結(jié)果都精確到整數(shù);2若隨機變量z服從正態(tài)分布,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)有極大值M,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項均為正數(shù)的數(shù)列的前n項和為,已知,且,對一切都成立.

1)當時,證明數(shù)列是常數(shù)列,并求數(shù)列的通項公式;

2)是否存在實數(shù),使數(shù)列是等差數(shù)列?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,為坐標原點,過點的直線交于兩點.

1)若直線與圓相切,求直線的方程;

2)若直線軸的交點為,且,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.

查看答案和解析>>

同步練習冊答案