【題目】凸函數(shù)的性質(zhì)定理為:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對(duì)于區(qū)間D內(nèi)的任意x1 , x2 , …,xn , 有 ≤f( ),已知函數(shù)y=sinx在區(qū)間(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值為

【答案】
【解析】解:∵f(x)=sinx在區(qū)間(0,π)上是凸函數(shù), 且A、B、C∈(0,π),
≤f( )=f( ),
即sinA+sinB+sinC≤3sin = ,
所以sinA+sinB+sinC的最大值為
已知f(x)=sinx在區(qū)間(0,π)上是凸函數(shù),利用凸函數(shù)的性質(zhì)可得: ≤sin ,變形得 sinA+sinB+sinC≤3sin 問(wèn)題得到解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=x3+3x2﹣mx+1在[﹣2,2]上為單調(diào)增函數(shù),則實(shí)數(shù)m的取值范圍為(
A.m≤﹣3
B.m≤0
C.m≥﹣24
D.m≥﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為檢驗(yàn)寒假學(xué)生自主學(xué)習(xí)的效果,年級(jí)部對(duì)某班50名學(xué)生各科的檢測(cè)成績(jī)進(jìn)行了統(tǒng)計(jì),下面是政治成績(jī)的頻率分布直方圖,其中成績(jī)分組區(qū)間是: , , ,

(1)求圖中的值及平均成績(jī);

(2)從分?jǐn)?shù)在中選5人記為,從分?jǐn)?shù)在中選3人,記為,8人組成一個(gè)學(xué)習(xí)小組.現(xiàn)從這5人和3人中各選1人做為組長(zhǎng),求被選中且未被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的極坐標(biāo)方程為,圓的參數(shù)方程為

(其中為參數(shù)).

)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;

)求圓上的點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠今年前五個(gè)月每月生產(chǎn)某種產(chǎn)品的數(shù)量C(件)關(guān)于時(shí)間t(月)的函數(shù)圖象如圖所示,則這個(gè)工廠對(duì)這種產(chǎn)品來(lái)說(shuō)( 。

A.一至三月每月生產(chǎn)數(shù)量逐月增加,四、五兩月每月生產(chǎn)數(shù)量逐月減少
B.一至三月每月生產(chǎn)數(shù)量逐月增加,四、五月每月生產(chǎn)數(shù)量與三月持平
C.一至三月每月生產(chǎn)數(shù)量逐月增加,四、五兩月均停止生產(chǎn)
D.一至三月每月生產(chǎn)數(shù)量不變,四、五兩月均停止生產(chǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 的二項(xiàng)展開(kāi)式中所有奇數(shù)項(xiàng)的系數(shù)之和為512,
(1)求展開(kāi)式的所有有理項(xiàng)(指數(shù)為整數(shù)).
(2)求(1﹣x)3+(1﹣x)4+…+(1﹣x)n展開(kāi)式中x2項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x(1﹣x).
(1)在如圖所給直角坐標(biāo)系中畫(huà)出函數(shù)f(x)的草圖,并直接寫(xiě)出函數(shù)f(x)的零點(diǎn);
(2)求出函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=x2+(2+lga)x+lgb,f(﹣1)=﹣2且f(x)≥2x恒成立,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓為參數(shù)和直線 其中為參數(shù), 為直線的傾斜角.

(1)當(dāng)時(shí),求圓上的點(diǎn)到直線的距離的最小值;

(2)當(dāng)直線與圓有公共點(diǎn)時(shí),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案