【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;

(Ⅲ)若,,使成立,求實數(shù)a的取值范圍.

【答案】(1) 增區(qū)間是 減區(qū)間是(2)(3)

【解析】試題分析:(1)先求導數(shù),再求導函數(shù)零點,根據(jù)零點分類討論導函數(shù)符號,確定單調區(qū)間(2)即等價于導函數(shù)上恒非正,利用變量分離,轉化為對應函數(shù)最值:最大值,再利用導數(shù)研究函數(shù)最大值,即得實數(shù)a的取值范圍,進而有最小值(3)等價于,由前兩題不難得到,代入即得實數(shù)a的取值范圍.

試題解析:解:由已知函數(shù)的定義域均為,且.

(Ⅰ)函數(shù)時,.所以函數(shù)的單調增區(qū)間是時, .所以函數(shù)的單調減區(qū)間是

(Ⅱ)∵上單調遞減,∴ 恒成立,即恒成立,設,∵,∴當時,

Ⅱ)因f(x)在上為減函數(shù),故上恒成立. 所以當 , 故當,即時,. 所以于是,故a的最小值為.

(Ⅲ)由已知得“當時,有”.由(Ⅱ),當時, , 由(Ⅰ),當時,有所以有

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量m=(cosx,-1),n=,函數(shù)f(x)=(m+n)·m.

(1)求函數(shù)f(x)的最小正周期;

(2)已知a,b,c分別為△ABC內角A,B,C的對邊,A為銳角,a=1,c=,且f(A)恰是函數(shù)f(x)在上的最大值,求A,b和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在公差不為零的等差數(shù)列{an}中,已知a1=1,且a1,a2,a5依次成等比數(shù)列.數(shù)列{bn}滿足bn+1=2bn-1,且b1=3.

(1)求{an},{bn}的通項公式;

(2)設數(shù)列的前n項和為Sn,試比較Sn與1-的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了制定合理的節(jié)電方案,供電局對居民用電情況進行了調查,通過抽樣,獲得了某年200戶居民每戶的月均用電量(單位:度),將數(shù)據(jù)按照,分成9組,制成了如圖所示的頻率直方圖.

(1)求直方圖中的值并估計居民月均用電量的中位數(shù);

(2)從樣本里月均用電量不低于700度的用戶中隨機抽取4戶,用表示月均用電量不低于800度的用戶數(shù),求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若為曲線的一條切線,求a的值;

(2)已知,若存在唯一的整數(shù),使得,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, , 底面

(1)證明:平面平面;

(2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結束.除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是.假設各局比賽結果相互獨立.

1)分別求甲隊以30,31,32獲勝的概率;

2)若比賽結果為3031,則勝利方得3分、對方得0分;若比賽結果為3:2,則勝利方得2分、對方得1.求甲隊得分X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)處取得極值,且在點處的切線與直線平行.

(1)求的解析式;

(2)求函數(shù)的單調遞增區(qū)間及極值。

(3)求函數(shù)的最值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)處取得極值,且在點處的切線與直線平行.

(1)求的解析式;

(2)求函數(shù)的單調遞增區(qū)間及極值。

(3)求函數(shù)的最值。

查看答案和解析>>

同步練習冊答案