【題目】已知函數(shù)
(1)若為曲線的一條切線,求a的值;
(2)已知,若存在唯一的整數(shù),使得,求a的取值范圍.
【答案】(1)或;(2).
【解析】試題分析:(1)先求出,設(shè)出切點(diǎn),利用切線方程求得,進(jìn)而求得的值;(2)問題轉(zhuǎn)化為存在唯一的整數(shù),使的最小值小于零,利用導(dǎo)數(shù)求其極值,數(shù)形結(jié)合可得 ,且,即可得的取值范圍.
試題解析:
(1)函數(shù)的定義域?yàn)?/span>,,
設(shè)切點(diǎn),則切線的斜率,
所以切線為,
因?yàn)?/span>恒過點(diǎn),斜率為,且為的一條切線,
所以,
所以或,所以或.
(2)令,,
,
當(dāng)時(shí),∵,,∴,
又,∴,∴在上遞增,
∴ ,又,
則存在唯一的整數(shù)使得,即;
當(dāng)時(shí),為滿足題意,在上不存在整數(shù)使,
即在上不存在整數(shù)使,
∵,∴.
①當(dāng)時(shí),,
∴在上遞減,
∴當(dāng)時(shí),,
∴,∴;
②當(dāng)時(shí),,不符合題意.
綜上所述,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺在一次對收看文藝節(jié)目和新聞節(jié)目的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如表所示:
類別 | 文藝節(jié)目 | 新聞節(jié)目 | 總計(jì) |
20至40歲 | 40 | 18 | 58 |
大于40歲 | 15 | 27 | 42 |
總計(jì) | 55 | 45 | 100 |
(1)由表中數(shù)據(jù)直觀分析,收看新聞節(jié)目的觀眾是否與年齡有關(guān)?
(2)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機(jī)抽取5名,則大于40歲的觀眾應(yīng)該抽取幾名?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某小區(qū)準(zhǔn)備將閑置的一直角三角形(其中∠B=,AB=a,BC=a)地塊開發(fā)成公共綠地,設(shè)計(jì)時(shí),要求綠地部分有公共綠地走道MN,且兩邊是兩個(gè)關(guān)于走道MN對稱的三角形(△AMN和△A′MN),現(xiàn)考慮方便和綠地最大化原則,要求M點(diǎn)與B點(diǎn)不重合,A′落在邊BC上,設(shè)∠AMN=θ.
(1)若θ=時(shí),綠地“最美”,求最美綠地的面積;
(2)為方便小區(qū)居民的行走,設(shè)計(jì)時(shí)要求將AN,A′N的值設(shè)計(jì)最短,求此時(shí)綠地公共走道的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某班一次數(shù)學(xué)測試成績的莖葉圖(如圖甲)和頻率分布直方圖(如圖乙)都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為,據(jù)此解答如下問題.(注:直方圖中與對應(yīng)的長方形的高度一樣)
(1)若按題中的分組情況進(jìn)行分層抽樣,共抽取人,那么成績在之間應(yīng)抽取多少人?
(2)現(xiàn)從分?jǐn)?shù)在之間的試卷中任取份分析學(xué)生失分情況,設(shè)抽取的試卷分?jǐn)?shù)在之間 份數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中是函數(shù)的導(dǎo)數(shù).
(1)求的單調(diào)區(qū)間;
(2)對于,不等式恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)正項(xiàng)數(shù)列的前項(xiàng)和,且滿足.
(Ⅰ)計(jì)算的值,猜想的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與直線相切,設(shè)點(diǎn)為圓上一動點(diǎn), 軸于,且動點(diǎn)滿足,設(shè)動點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)直線與直線垂直且與曲線交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)討論函數(shù)的單調(diào)性;
(2)若,求證:函數(shù)有且只有一個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小值為,其中.
(1)求的值;
(2)若對任意的,有成立,求實(shí)數(shù)的范圍;
(3)證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com