【題目】ABC中,角,,所對(duì)的邊分別為,,c.已知

則角的大小________

【答案】;

【解析】分析:根據(jù)余弦定理,將題中等式化簡(jiǎn)整理,可得sinBcosC=2sinAcosB﹣sinCcosB,利用兩角和正弦公式化簡(jiǎn)得2sinAcosB=sin(B+C)=sinA,在兩邊約去sinA,結(jié)合三角形內(nèi)角取值范圍即可得到角B的大小.

詳解:ABC中,b2=a2+c2﹣2accosB,

∴b2﹣a2﹣c2=﹣2accosB,同理可得c2﹣a2﹣b2=﹣2abcosC

,

∵sinC≠0,可得sinBcosC=2sinAcosB﹣sinCcosB,

∴2sinAcosB=sinBcosC+sinCcosB=sin(B+C)=sinA,

∵sinA≠0,∴等式兩邊約去sinA,可得,

∵0<B<π,∴角B的大小

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓

(1)直線過點(diǎn),被圓截得的弦長(zhǎng)為,求直線的方程;

(2)直線的的斜率為1,且被圓截得弦,若以為直徑的圓過原點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是( )
A.命題“若 ,則 ”的逆否命題為:“若 ,則
B.“ ”是“ ”的充分不必要條件
C.若 為假命題,則 、 均為假命題
D.命題 :“ ,使得 ”,則 :“ ,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的個(gè)數(shù)為( )
①“x∈R都有x2≥0”的否定是“x0∈R使得x02≤0”;
②“x≠3”是“|x|≠3”成立的充分條件;
③命題“若m≤ ,則方程mx2+2x+2=0有實(shí)數(shù)根”的否命題為真命題.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線 (a>0,b>0)的左焦點(diǎn)為F1 , 左頂點(diǎn)為A,過F1作x軸的垂線交雙曲線于P、Q兩點(diǎn),過P作PM垂直QA于M,過Q作QN垂直PA于N,設(shè)PM與QN的交點(diǎn)為B,若B到直線PQ的距離大于a+ ,則該雙曲線的離心率取值范圍是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行試銷,得到如下數(shù)據(jù)表:

(1)根據(jù)上表求出回歸直線方程 ,并預(yù)測(cè)當(dāng)單價(jià)定為8.3元時(shí)的銷量;
(2)如果該工廠每件產(chǎn)品的成本為5.5元,利用所求的回歸方程,要使得利潤(rùn)最大,單價(jià)應(yīng)該定為多少?
附:線性回歸方程 中斜率和截距最小二乘估計(jì)計(jì)算公式:
,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是自然對(duì)數(shù)的底數(shù), .
(1)求函數(shù) 的單調(diào)遞增區(qū)間;
(2)若 為整數(shù), ,且當(dāng) 時(shí), 恒成立,其中 的導(dǎo)函數(shù),求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水仙花經(jīng)營(yíng)部每天的房租、水電、人工等固定成本為1000,每盆水仙花的進(jìn)價(jià)是10,銷售單價(jià)() ()與日均銷售量()的關(guān)系如下表,并保證經(jīng)營(yíng)部每天盈利

20

35

40

50

400

250

200

100

20

35

40

50

400

250

200

100

(Ⅰ) 在所給的坐標(biāo)圖紙中根據(jù)表中提供的數(shù)據(jù),描出實(shí)數(shù)對(duì)的對(duì)應(yīng)點(diǎn),并確定的函數(shù)關(guān)系式;

(Ⅱ)求出的值并解釋其實(shí)際意義;

(Ⅲ)請(qǐng)寫出該經(jīng)營(yíng)部的日銷售利潤(rùn)的表達(dá)式,并回答該經(jīng)營(yíng)部怎樣定價(jià)才能獲最大日銷售利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案