【題目】設(shè)橢圓的右焦點為,右頂點為,已知,其中為原點,為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率的取值范圍.
【答案】(1) 橢圓方程為;(2) 直線l的斜率的取值范圍為.
【解析】試題分析:(Ⅰ)求橢圓標準方程,只需確a的值,由,得,再利用,可解得a的值;(Ⅱ)先化簡條件: ,即M再OA的中垂線上,,再利用直線與橢圓位置關(guān)系,聯(lián)立方程組求;利用兩直線方程組求H,最后根據(jù),列等量關(guān)系即可求出直線斜率的取值范圍.
試題解析:(Ⅰ)解:設(shè),由,即,可得,又,所以,因此,所以橢圓的方程為.
(Ⅱ)解:設(shè)直線的斜率為(),則直線的方程為.
設(shè),由方程組,消去,整理得.
解得,或,由題意得,從而.
由(Ⅰ)知,,設(shè),有 ,.
由,得,所以,解得.
因此直線的方程為.
設(shè),由方程組消去,解得.
在中,,即,
化簡得,即,解得或.
所以,直線的斜率的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=[x3+3x2+(a+6)x+6﹣a]e﹣x在區(qū)間(2,4)上存在極大值點,則實數(shù)a的取值范圍是( )
A.(﹣∞,﹣32)
B.(﹣∞,﹣27)
C.(﹣32,﹣27)
D.(﹣32,﹣27]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率為 .第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為 ,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進行抽獎所獲獎金 (元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,F(xiàn)1、F2分別是橢圓的左、右焦點,M為橢圓上除長軸端點外的任意一點,且△MF1F2的周長為4+2 .
(1)求橢圓C的方程;
(2)過點D(0,﹣2)作直線l與橢圓C交于A、B兩點,點N滿足 (O為原點),求四邊形OANB面積的最大值,并求此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù))在極坐標系(與直角坐標系xOy取相同的長度單位.且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標方程;
(2)設(shè)圓C與直線l交于點A,B.若點P的坐標為(1,2),求|PA|+|PB|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知函數(shù),其中,記函數(shù)的定義域為.
(1)求函數(shù)的定義域;
(2)若函數(shù)的最大值為,求的值;
(3)若對于內(nèi)的任意實數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系.已知點 的極坐標為 ,直線 的極坐標方程為 ,且點 在直線 上.
(1)求 的值及直線 的直角坐標方程;
(2)圓 的極坐標方程為 ,試判斷直線 與圓 的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱柱的底面是正三角形,側(cè)面為菱形,且,平面平面,分別是的中點.
(I)求證:∥平面;
(II)求證:;
(III)求BA1與平面所成角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com