【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過橢圓右焦點且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點,當(dāng)點到直線距離最小時,求點的直角坐標(biāo).
【答案】(1)(2)
【解析】試題分析:
(1)消去參數(shù)得到橢圓的標(biāo)準(zhǔn)方程,從而得到右焦點的坐標(biāo).由極坐標(biāo)方程可得直線的直角坐標(biāo)方程為,由此可得過點F且與垂直的直線的方程,化為極坐標(biāo)方程即可.(2)設(shè)點,可得點到直線的距離,然后根據(jù)三角函數(shù)的有關(guān)知識求解.
試題解析:
(1)將參數(shù)方程(為參數(shù))消去參數(shù)得,
∴橢圓的標(biāo)準(zhǔn)方程為,
∴橢圓的右焦點為,
由得,
∴直線的直角坐標(biāo)方程為,
∴過點與垂直的直線方程為,即,
∴極坐標(biāo)方程為.
(2)設(shè)點,
則點到直線的距離,
其中,
∴當(dāng)時, 取最小值,
此時.
∴,
,
∴點坐標(biāo)為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù),前項和為,且.
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右頂點與拋物線的焦點重合,橢圓的離心率為,過橢圓的右焦點且垂直于軸的直線截拋物線所得的弦長為.
(1)求橢圓和拋物線的方程;
(2)過點的直線與交于兩點,點關(guān)于軸的對稱點為,證明:直線恒過一定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校初三年級有名學(xué)生,隨機(jī)抽查了名學(xué)生,測試分鐘仰臥起坐的成績(次數(shù)),將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.用樣本估計總體,下列結(jié)論正確的是( )
A. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)的中位數(shù)為次
B. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)的眾數(shù)為次
C. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)超過次的人數(shù)約有人
D. 該校初三年級學(xué)生分鐘仰臥起坐的次數(shù)少于次的人數(shù)約為人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù))
(1)求曲線的直角坐標(biāo)方程及曲線的極坐標(biāo)方程;
(2)當(dāng)()時在曲線上對應(yīng)的點為,若的面積為,求點的極坐標(biāo),并判斷是否在曲線上(其中點為半圓的圓心)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次有600人參加的數(shù)學(xué)測試,其成績的頻數(shù)分布表如圖所示,規(guī)定85分及其以上為優(yōu)秀.
區(qū)間 | [75,80) | [80,85) | [85,90) | [90,95) | [95,100] |
人數(shù) | 36 | 114 | 244 | 156 | 50 |
(Ⅰ)現(xiàn)用分層抽樣的方法從這600人中抽取20人進(jìn)行成績分析,求其中成績?yōu)閮?yōu)秀的學(xué)生人數(shù);
(Ⅱ)在(Ⅰ)中抽取的20名學(xué)生中,要隨機(jī)選取2名學(xué)生參加活動,記“其中成績?yōu)閮?yōu)秀的人數(shù)”為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性.
(Ⅱ)是否存在實數(shù),使對任意恒成立?若存在,試求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為y= 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達(dá)幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程,并說明其表示什么軌跡;
(2)若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com