【題目】某次文藝晚會上共演出7個節(jié)目,其中2個歌曲,3個舞蹈,2個曲藝節(jié)目,求分別滿足下列條件的節(jié)自編排方法有多少種?(用數(shù)字作答)

(1)一個歌曲節(jié)目開頭,另個歌曲節(jié)目放在最后壓臺;

(2)2個歌曲節(jié)目相鄰且2個曲藝節(jié)目不相鄰.

【答案】(1)240;(2)960.

【解析】

1)首先安排兩個歌曲節(jié)目,然后安排剩余5個節(jié)目,乘法原理得到答案.

2)將歌曲節(jié)目捆綁看成一個整體,把曲藝節(jié)目插空在其他節(jié)目中,計算得到答案.

解:(1)根據(jù)題意,分2步進行

①要求2個歌曲節(jié)目1個在開頭,另一個在最后,有種安排方法,

②將剩下的5個節(jié)目全排列,安排在中間,有種安排方法,

則一共有種安排方法;

(2)根據(jù)題意,分3步進行

①2個歌曲節(jié)目相鄰,將其看成一個整體,有種情況,

②將這個整體與3個舞蹈節(jié)目全排列,有種情況,排好后有5個空位,

③在5個空位中任選2個,安排2個曲藝節(jié)目,有種情況,

則一共有種安排方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4―4:坐標系與參數(shù)方程]

在直角坐標系xOy中,直線l1的參數(shù)方程為t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1l2的交點為P,當(dāng)k變化時,P的軌跡為曲線C.

(1)寫出C的普通方程;

(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設(shè)l3ρ(cosθ+sinθ) =0,Ml3C的交點,求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60個組合,稱六十甲子,周而復(fù)始,無窮無盡。2019年是“干支紀年法”中的己亥年,那么2026年是“干支紀年法”中的

A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知點,的坐標分別為,.直線,相交于點,且它們的斜率之積是.記點的軌跡為

Ⅰ)求的方程.

Ⅱ)已知直線,分別交直線于點,軌跡在點處的切線與線段交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三棱錐的底面是正三角形,側(cè)棱長均相等,是棱上的點(不含端點),記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)設(shè)函數(shù).若存在區(qū)間,使得函數(shù)上的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱,平面平面,分別是的中點.

(1)證明:;

(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某制造商3月生產(chǎn)了一批乒乓球,從中隨機抽樣100個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)分組如下:

分組

頻數(shù)

頻率

[3995,3997

10


[3997,3999

20


[3999,4001

50


[4001,4003]

20


合計

100


)請在上表中補充完成頻率分布表(結(jié)果保留兩位小數(shù)),并在圖中畫出頻率分布直方圖;

)若以上述頻率作為概率,已知標準乒乓球的直徑為4000 mm,試求這批球的直徑誤差不超過003 mm的概率;

)統(tǒng)計方法中,同一組數(shù)據(jù)經(jīng)常用該組區(qū)間的中點值(例如區(qū)間[3999,4001)的中點值是4000作為代表.據(jù)此估計這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(ax2+2x+3).

(1)若f(x)定義域為R,求a的取值范圍;

(2)若f(1)=1,求f(x)的單調(diào)區(qū)間;

(3)是否存在實數(shù)a,使f(x)的最小值為0?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案