【題目】已知甲、乙、丙、丁、戊、己等6人.(以下問題用數(shù)字作答)

(1)邀請這6人去參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的情形?

(2)這6人同時加入6項不同的活動,每項活動限1人,其中甲不參加第一項活動,乙不參加第三項活動,共有多少種不同的安排方法?

(3)將這6人作為輔導員安排到3項不同的活動中,每項活動至少安排1名輔導員;求丁、戊、己恰好被安排在同一項活動中的概率.

【答案】(1)63(2)504(3)

【解析】試題分析:

(1)由題意結(jié)合排列組合的性質(zhì)可得有63種不同的取法

(2)利用題意減去不滿足題意的分法可得共有504種不同的安排方法

(3)由題意結(jié)合概率公式可得丙、戊恰好被安排在一項活動中的概率為

試題解析:

(1)故共有63種不同的取法

(2)故共有504種不同的安排方法

(3)

故丙、戊恰好被安排在一項活動中的概率為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.

(1) 求圖中的值;

(2) 已知滿意度評分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進行座談,設(shè)其中的女生人數(shù)為隨機變量,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“石頭、剪刀、布”是個廣為流傳的游戲,游戲時甲乙雙方每次做“石頭”“剪刀”“布”三種手勢中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,同種手勢不分勝負須繼續(xù)比賽,假設(shè)甲乙兩人都是等可能地做這三種手勢.

(1)列舉一次比賽時兩人做出手勢的所有可能情況;

(2)求一次比賽甲取勝的概率,并說明“石頭、剪刀、布”這個廣為流傳的游戲的公平性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明準備利用暑假時間去旅游,媽媽為小明提供四個景點,九寨溝、泰山、長白山、武夷山.小明決定用所學的數(shù)學知識制定一個方案來決定去哪個景點:(如圖)曲線和直線交于點.以為起點,再從曲線上任取兩個點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為.若去九寨溝;若去泰山;若去長白山; 去武夷山.

(1)若從這六個點中任取兩個點分別為終點得到兩個向量,分別求小明去九寨溝的概率和去泰山的概率;

(2)按上述方案,小明在曲線上取點作為向量的終點,則小明決定去武夷山.點在曲線上運動,若點的坐標為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ex﹣ax2,曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.

(1)求a,b的值;

(2)求f(x)在[0,1]上的最大值;

(3)證明:當x>0時,ex+(1﹣e)x﹣xlnx﹣1≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處都取得極值.

(1)求、的值;(2)若對時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是為參數(shù)).

1)求曲線的直角坐標方程和直線的的普通方程;

2)設(shè)點,若直線與曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、,離心率,點在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過點且不與坐標軸垂直的直線交橢圓、兩點,線段的垂直平分線與軸交于點,求點的橫坐標的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

查看答案和解析>>

同步練習冊答案