【題目】小明準(zhǔn)備利用暑假時間去旅游,媽媽為小明提供四個景點(diǎn),九寨溝、泰山、長白山、武夷山.小明決定用所學(xué)的數(shù)學(xué)知識制定一個方案來決定去哪個景點(diǎn):(如圖)曲線和直線交于點(diǎn).以為起點(diǎn),再從曲線上任取兩個點(diǎn)分別為終點(diǎn)得到兩個向量,記這兩個向量的數(shù)量積為.若去九寨溝;若去泰山;若去長白山; 去武夷山.

(1)若從這六個點(diǎn)中任取兩個點(diǎn)分別為終點(diǎn)得到兩個向量,分別求小明去九寨溝的概率和去泰山的概率;

(2)按上述方案,小明在曲線上取點(diǎn)作為向量的終點(diǎn),則小明決定去武夷山.點(diǎn)在曲線上運(yùn)動,若點(diǎn)的坐標(biāo)為,求的最大值.

【答案】(1)去九寨溝的概率為,不去泰山的概率為;(2)所以

【解析】試題分析:

(1) 由題意列出所有可能的事件,結(jié)合古典概型公式可得小明去九寨溝的概率為,去泰山的概率

(2)由題意可得,結(jié)合圓的幾何意義可得其最大值為.

試題解析:

(1)由題意可知得到向量組合方式共有:

共15種

設(shè)事件“去九寨溝”=B,“不去泰山”=C

則去九寨溝即ξ>0:

共4種

去泰山即=0,

共4種

(2)由題意:小明去武夷山即

故可設(shè)

上式幾何意義:圓上的點(diǎn)與點(diǎn)(6,3)的距離

上式的最大值即點(diǎn)

距離的最大值,即圓心

的距離再加半徑

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)一直線與拋物線兩點(diǎn),點(diǎn)拋物線上到直線距離最小的點(diǎn),直線直線于點(diǎn).

點(diǎn)坐標(biāo);

)求證直線行于拋物線的對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一臺機(jī)器由于使用時間較長,生產(chǎn)的零件有一些會有缺損,按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計數(shù)據(jù)如表所示:

(1)作出散點(diǎn)圖;

(2)如果線性相關(guān),求出回歸直線方程.

(3)若實(shí)際生產(chǎn)中,允許每小時的產(chǎn)品中有缺損的零件最多為10個,那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)某電子商務(wù)平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的位上網(wǎng)購物者的年齡情況如圖.

1已知、、三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求的值;

2該電子商務(wù)平臺將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵潛在消費(fèi)人群的消費(fèi),該平臺決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放元的代金券,潛在消費(fèi)人群每人發(fā)放元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的位上網(wǎng)購物者中抽取了人,現(xiàn)在要在這人中隨機(jī)抽取人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】葫蘆島市某工廠黨委為了研究手機(jī)對年輕職工工作和生活的影響情況做了一項調(diào)查:在廠內(nèi)用簡單隨機(jī)抽樣方法抽取了30名25歲至35歲的職工,對其“每十天累計看手機(jī)時間”(單位:小時)進(jìn)行調(diào)查,得到莖葉圖如下.所抽取的男職工“每十天累計看手機(jī)時間”的平均值和所抽取的女生 “每十天累計看手機(jī)時間”的中位數(shù)分別是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

I若函數(shù)處取得極值,求曲線在點(diǎn)處的切線方程;

II若函數(shù)上的最小值是,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙、丙、丁、戊、己等6人.(以下問題用數(shù)字作答)

(1)邀請這6人去參加一項活動,必須有人去,去幾人自行決定,共有多少種不同的情形?

(2)這6人同時加入6項不同的活動,每項活動限1人,其中甲不參加第一項活動,乙不參加第三項活動,共有多少種不同的安排方法?

(3)將這6人作為輔導(dǎo)員安排到3項不同的活動中,每項活動至少安排1名輔導(dǎo)員;求丁、戊、己恰好被安排在同一項活動中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位射擊運(yùn)動員,在某天訓(xùn)練已各射擊10次,每次命中的環(huán)數(shù)如下:

7 8 7 9 5 4 9 10 7 4

9 5 7 8 7 6 8 6 7 7

通過計算估計,甲、乙二人的射擊成績誰更穩(wěn);

規(guī)定命中8環(huán)及以上環(huán)數(shù)為優(yōu)秀,依據(jù)上述數(shù)據(jù)估計,在第11次時,甲、乙人分別獲得優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線,曲線為參數(shù)), 以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)若射線分別交兩點(diǎn), 求的最大值.

查看答案和解析>>

同步練習(xí)冊答案