【題目】某市一中學(xué)高三年級統(tǒng)計學(xué)生的最近20次數(shù)學(xué)周測成績(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績的中位數(shù),并據(jù)此判斷甲乙兩位同學(xué)的成績誰更好?
(2)將同學(xué)乙的成績的頻率分布直方圖補充完整;
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績中任意選出2個成績,設(shè)選出的2個成績中含甲的成績的個數(shù)為,求的分布列及數(shù)學(xué)期望.
【答案】(1)甲的中位數(shù)是119,乙的中位數(shù)是128,乙的成績更好 (2)見解析 (3)分布列見解析,數(shù)學(xué)期望為0.8
【解析】
(1)按大小順序排好后,第10個數(shù)和第11個數(shù)的平均數(shù)是中位數(shù);
(2)計算頻率及頻率除以組距后可畫出頻率分布直方圖;
(3)不低于140分的有5個,取值依次為0,1,2,求出概率得分布列,再由期望公式求得期望.
解:(1)甲的中位數(shù)是119,乙的中位數(shù)是128,乙的成績更好
(2)乙頻率分布直方圖如下圖所示
(3)甲乙不低于140分的成績共5個,則的取值為0,1,2
;;
所以的分布列為
0 | 1 | 2 | |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:與直線交于A、B兩點.
(1)當取得最小值為時,求的值.
(2)在(1)的條件下,過點作兩條直線PM、PN分別交拋物線C于M、N(M、N不同于點P)兩點,且的平分線與軸平行,求證:直線MN的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐VABCD中,底面ABCD是矩形,VD⊥平面ABCD,過AD的平面分別與VB,VC交于點M,N.
(1) 求證:BC⊥平面VCD;
(2) 求證:AD∥MN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,右頂點為,右焦點為,為坐標原點,,橢圓過點.
(1)求橢圓的方程;
(2)若過點的直線與橢圓交于不同的兩點(在之間),求與面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查中學(xué)生每天玩游戲的時間是否與性別有關(guān),隨機抽取了男、女學(xué)生各50人進行調(diào)查,根據(jù)其日均玩游戲的時間繪制了如下的頻率分布直方圖.
(1)求所調(diào)查學(xué)生日均玩游戲時間在分鐘的人數(shù);
(2)將日均玩游戲時間不低于60分鐘的學(xué)生稱為“游戲迷”,已知“游戲迷”中女生有6人;
①根據(jù)已知條件,完成下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為“游戲迷”和性別關(guān)系;
非游戲迷 | 游戲迷 | 合計 | |
男 | |||
女 | |||
合計 |
②在所抽取的“游戲迷”中按照分層抽樣的方法抽取10人,再在這10人中任取9人進行心理干預(yù),求這9人中男生全被抽中的概率.
附:(其中為樣本容量).
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進行了調(diào)查統(tǒng)計,繪制得到下面的散點圖.
(1)由散點圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計該校學(xué)生升入中學(xué)的第一年(年級代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計公式分別為= ,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中是常數(shù),且),曲線在處的切線方程為.
(1)求的值;
(2)若存在(其中是自然對數(shù)的底),使得成立,求的取值范圍;
(3)設(shè),若對任意,均存在,使得方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線上一點,點為拋物線的焦點,.
(1)求直線的方程;
(2)若直線與拋物線的另一個交點為,曲線在點與點處的切線分別為,直線相交于點,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com