【題目】已知函數(shù)f(x)=x+,且此函數(shù)的圖象過點(diǎn)(1,5).
(1)求實(shí)數(shù)m的值并判斷f(x)的奇偶性;
(2)判斷函數(shù)f(x)在[2,+∞)上的單調(diào)性,證明你的結(jié)論.
【答案】(1)m=4,奇函數(shù);(2)f(x)在[2,+∞)上單調(diào)遞增,證明見解析.
【解析】
試題(1)函數(shù)圖象過點(diǎn)(1,5)將此點(diǎn)代入函數(shù)關(guān)系式求出m的值即可,因?yàn)楹瘮?shù)定義域關(guān)于原點(diǎn)對稱,需要判斷函數(shù)是否滿足關(guān)系式或者.滿足前者為偶函數(shù),滿足后者為奇函數(shù),否則不具有奇偶性.此題也可以將看做與兩個(gè)函數(shù)的和,由的奇偶性判斷出的奇偶性.(2)利用函數(shù)單調(diào)性的定義式:區(qū)間上的時(shí),的正負(fù)來確定函數(shù)在區(qū)間上的單調(diào)性.
試題解析:(1)(1)∵f(x)過點(diǎn)(1,5),
∴1+m=5m=4.
對于f(x)=x+,∵x≠0,
∴f(x)的定義域?yàn)椋ǎ?/span>∞,0)∪(0,+∞),關(guān)于原點(diǎn)對稱.
∴f(-x)=-x+=-f(x).
∴f(x)為奇函數(shù).
另解:,,定義域均與定義域相同,因?yàn)?/span>為奇函數(shù),因此可以得出也為奇函數(shù).
(2)證明:設(shè)x1,x2∈[2,+∞)且x1<x2,
則f(x1)-f(x2)=x1+-x2-=(x1-x2)+=.
∵x1,x2∈[2,+∞)且x1<x2,
∴x1-x2<0,x1x2>4,x1x2>0.
∴f(x1)-f(x2)<0.
∴f(x)在[2,+∞)上單調(diào)遞增.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國高鐵的快速發(fā)展給群眾出行帶來巨大便利,極大促進(jìn)了區(qū)域經(jīng)濟(jì)社會發(fā)展.已知某條高鐵線路通車后,發(fā)車時(shí)間間隔(單位:分鐘)滿足,經(jīng)測算,高鐵的載客量與發(fā)車時(shí)間間隔相關(guān):當(dāng)時(shí)高鐵為滿載狀態(tài),載客量為人;當(dāng)時(shí),載客量會在滿載基礎(chǔ)上減少,減少的人數(shù)與成正比,且發(fā)車時(shí)間間隔為分鐘時(shí)的載客量為人.記發(fā)車間隔為分鐘時(shí),高鐵載客量為.
求的表達(dá)式;
若該線路發(fā)車時(shí)間間隔為分鐘時(shí)的凈收益(元),當(dāng)發(fā)車時(shí)間間隔為多少時(shí),單位時(shí)間的凈收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.
(2)解關(guān)于t不等式f(x-t)+f(x2-2t)≥0對一切實(shí)數(shù)x都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程與曲線直角坐標(biāo)方程;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)將收集到的六組數(shù)據(jù)制作成散點(diǎn)圖如圖所示,并得到其回歸直線的方程為,計(jì)算其相關(guān)系數(shù)為,相關(guān)指數(shù)為.經(jīng)過分析確定點(diǎn)為“離群點(diǎn)”,把它去掉后,再利用剩下的5組數(shù)據(jù)計(jì)算得到回歸直線的方程為,相關(guān)系數(shù)為,相關(guān)指數(shù)為.以下結(jié)論中,不正確的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:,直線:.
(1)求曲線和直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于實(shí)數(shù)a,b,定義運(yùn)算“*”:a*b=,設(shè)f (x)=(x-4)*,若關(guān)于x的方程|f (x)-m|=1(m∈R)恰有四個(gè)互不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com