【題目】已知函數(shù),.

(1)若有零點(diǎn),求的取值范圍;

2)討論的根的情況.

【答案】1;(2)見解析.

【解析】

1)作出函數(shù)的圖象,利用數(shù)形結(jié)合思想得出當(dāng)兩個(gè)函數(shù)有交點(diǎn)時(shí),求出實(shí)數(shù)的取值范圍;

2)作出函數(shù)上的圖象,根據(jù)兩函數(shù)圖象的頂點(diǎn)的高低得出方程的根的個(gè)數(shù).

1)作出函數(shù)的圖象如下圖所示,

由于雙勾函數(shù)上單調(diào)遞減,在上單調(diào)遞增,

當(dāng)時(shí),函數(shù)處取得最小值,即,

由圖象可知,當(dāng)時(shí),直線與函數(shù)的圖象有交點(diǎn).

因此,實(shí)數(shù)的取值范圍是;

2)二次函數(shù)的圖象開口向下,對(duì)稱軸為直線,

則該函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以,.

作出函數(shù)上的圖象如下圖所示:

由圖象可知,當(dāng)時(shí),兩個(gè)函數(shù)沒有交點(diǎn),方程無實(shí)根;

當(dāng)時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn),方程只有一根;

當(dāng)時(shí),兩個(gè)函數(shù)有兩個(gè)交點(diǎn),方程有兩實(shí)根.

綜上所述,當(dāng)時(shí),方程無實(shí)根;當(dāng)時(shí),方程只有一根;當(dāng)時(shí),方程有兩根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,的中點(diǎn).

1)求證:平面平面

2)若二面角的余弦值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓:過點(diǎn)和點(diǎn).

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,分別為的中點(diǎn),過任作一個(gè)平面分別與直線相交于點(diǎn),則下列結(jié)論正確的是___________.①對(duì)于任意的平面,都有直線,相交于同一點(diǎn);②存在一個(gè)平面,使得點(diǎn)在線段上,點(diǎn)在線段的延長線上; ③對(duì)于任意的平面,都有;④對(duì)于任意的平面,當(dāng)在線段上時(shí),幾何體的體積是一個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本大題滿分12分)

隨著互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生,某市場(chǎng)研究人員為了了解共享單車運(yùn)營公司的經(jīng)營狀況,對(duì)該公司最近六個(gè)月的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的折線圖:

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場(chǎng)占有率與月份代碼之間的關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)公司2017年4月的市場(chǎng)占有率;

(Ⅱ)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購一批單車,現(xiàn)有采購成本分別為元/輛和1200元/輛的、兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致單車使用壽命各不相同,考慮到公司運(yùn)營的經(jīng)濟(jì)效益,該公司決定先對(duì)這兩款車型的單車各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車使用壽命的頻數(shù)表如下:

經(jīng)測(cè)算,平均每輛單車每年可以帶來收入500元,不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率,如果你是公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會(huì)選擇采購哪款車型?

參考公式:回歸直線方程為,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,求的極值;

(Ⅱ)若在區(qū)間恒成立,求的取值范圍;

(Ⅲ)判斷函數(shù)的零點(diǎn)個(gè)數(shù).(直接寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)為頂點(diǎn)的三角形的周長為,一雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),且它的實(shí)軸長等于虛軸長,設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為,其中軸的同一側(cè).

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)是否存在題設(shè)中的點(diǎn),使得?若存在, 求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x3(a0,且a≠1)

1)討論f(x)的奇偶性;

2)求a的取值范圍,使f(x)0在定義域上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x,且此函數(shù)的圖象過點(diǎn)(15).

1)求實(shí)數(shù)m的值并判斷fx)的奇偶性;

2)判斷函數(shù)fx)在[2,+)上的單調(diào)性,證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案