已知M(-1,0),N(5,6),P(3,4)三點(diǎn)在一條直線上,點(diǎn)P分
MN
的比為λ,則λ的值為( 。
A、
1
3
B、
1
2
C、2
D、3
考點(diǎn):線段的定比分點(diǎn)
專題:平面向量及應(yīng)用
分析:根據(jù)定比分點(diǎn)的定義,得出
MP
PN
,代入坐標(biāo),求出λ的值.
解答: 解:∵點(diǎn)P分
MN
的比為λ,∴
MP
PN
,
即(3+1,4-0)=λ(5-3,6-4),
∴(4,4)=λ(2,2);
∴λ=2.
故選:C.
點(diǎn)評:本題考查了定比分點(diǎn)的應(yīng)用問題,也考查了平面向量的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-2x-8
的定義域是集合A,函數(shù)g(x)=
3-2x
1-(x-a)2
的定義域是集合B,且A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系xOy的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ),斜率為
3
的直線l交y軸于點(diǎn)E(0,1).
(I)求C的直角坐標(biāo)方程,l的參數(shù)方程;
(Ⅱ)直線l與曲線C交于A、B兩點(diǎn),求|EA|+|EB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列命題的真假:
(1)對f(x)的定義域的任意兩個(gè)自變量x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2)成立,則函數(shù)f(x)是增函數(shù);
(2)在區(qū)間[-2π,0]上,至少有一個(gè)角α,使得sinα=cosα;
(3)平行于同一條直線的直線互相平行;
(4)函數(shù)f(x)=x-2-lgx在(0,
1
2
)上有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某空間幾何體的三視圖如圖所示,則( 。
A、該幾何體的表面積為4+2π
B、該幾何體的體積為
1
3
π
C、該幾何體的表面積為4+4π
D、該幾何體的體積為π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1,側(cè)棱AA1⊥平面ABC,O、D、E分別是棱AB、A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且AF=
1
4
AB.
(Ⅰ)求證:EF∥平面BDC1
(Ⅱ)求證:平面OCC1D⊥平面ABB1A1
(Ⅲ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c依次是方程x+sinx=1,x+sinx=2,x+
1
2
sinx=2的根,并且0<x<
π
2
,則a,b,c的大小關(guān)系是( 。
A、a<b<c
B、a<c<b
C、c<b<a
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2-3,則首項(xiàng)a1=
 
,當(dāng)n≥2時(shí),an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
1+sinθ+cosθ
1+sinθ-cosθ
=
1
2
,求cos2θ的值.

查看答案和解析>>

同步練習(xí)冊答案