【題目】某種商品價格與該商品日需求量之間的幾組對照數(shù)據(jù)如下表:
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,當(dāng)價格元時,日需求量的預(yù)測值為多少?
參考公式:線性歸回方程: ,其中 ,
【答案】(1)所求線性回歸方程為
(2)價格元/ kg時,日需求量的預(yù)測值為kg
【解析】【試題分析】(1)依據(jù)題設(shè)運用平均數(shù)公式分別算出,
,然后再算出, 及 .進而求出. 代入回歸方程求出. 最終求出線性回歸方程為.(2)依據(jù)(1)的結(jié)論直接將代入回歸方程求得, ,即當(dāng)價格元/ kg時,日需求量的預(yù)測值為kg.
解: (1)由所給數(shù)據(jù)計算得
,
,
,
.
.
.
所求線性回歸方程為.
(2)由(1)知當(dāng)時,
故當(dāng)價格元/ kg時,日需求量的預(yù)測值為kg.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且.
(I)若,求函數(shù)的單調(diào)區(qū)間;(其中是自然對數(shù)的底數(shù))
(II)設(shè)函數(shù),當(dāng)時,曲線與有兩個交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log (x2﹣ax+b). (Ⅰ)若函數(shù)f(x)的定義域為(﹣∞,2)∪(3,+∞),求實數(shù)a,b的值;
(Ⅱ)若f(﹣2)=﹣3且f(x)在(﹣∞,﹣1]上為增函數(shù),求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若過點恰有兩條直線與曲線相切,求的值;
(Ⅱ)用表示中的最小值,設(shè)函數(shù),若恰有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中, ,點分別在邊上,且, 交于點.現(xiàn)將沿折起,使得平面平面,得到圖2.
(Ⅰ)在圖2中,求證: ;
(Ⅱ)若點是線段上的一動點,問點在什么位置時,二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+2ax﹣a﹣1,x∈[0,2],a為常數(shù).
(1)求f(x)的最小值g(a)的解析式;
(2)在(1)中,是否存在最小的整數(shù)m,使得g(a)﹣m≤0對于任意a∈R均成立,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四組函數(shù),兩個函數(shù)相同的是( )
A.f(x)= ,g(x)=x
B.f(x)=log33x , g(x)=
C.f(x)=( )2 , g(x)=|x|
D.f(x)=x,g(x)=x0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某畜牧站為了考查某種新型藥物預(yù)防動物疾病的效果,利用小白鼠進行試驗,得到如下丟失數(shù)據(jù)的列聯(lián)表
患病 | 未患病 | 總計 | |
沒服用藥 | 20 | 30 | 50 |
服用藥 | 50 | ||
總計 | 100 |
設(shè)從沒服用藥的小白鼠中任取兩只,未患病的動物數(shù)為,從服用藥物的小白鼠中任取兩只,未患病的動物數(shù)為,得到如下比例關(guān)系:
(1)求出列聯(lián)表中數(shù)據(jù),,,的值
(2)是否有的把握認為藥物有效?并說明理由
(參考公式:,當(dāng)時,有的把握認為A與B有關(guān);時,有的把握認為A與B有關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本著健康、低碳的生活理念,租自行車騎游的人越來越多.某自行車租車點的收費標準是每年每次租時間不超過兩小時免費,超過兩個小時的部分每小時收費2元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙兩人獨立來該租車點租車騎游(各租一車一次).設(shè)甲、乙不超過兩小時還車的概率分別為, ;兩小時以上且不超過三小時還車的概率為, ;兩人租車時間都不會超過四小時.
(1)求甲、乙都在三到四小時內(nèi)還車的概率和甲、乙兩人所付租車費相同的概率;
(2)設(shè)甲、乙兩人所付的租車費用之和為隨機變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com