求多項(xiàng)式﹙x-1﹚-﹙x-1﹚2+﹙x-1﹚3-﹙x-1﹚4+﹙x-1﹚5的展開(kāi)式中的x3的系數(shù).
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:計(jì)算題,二項(xiàng)式定理
分析:分別求出﹙x-1﹚3、﹙x-1﹚4、﹙x-1﹚5的x3的系數(shù),即可得出結(jié)論.
解答: 解:﹙x-1﹚-﹙x-1﹚2+﹙x-1﹚3-﹙x-1﹚4+﹙x-1﹚5中﹙x-1﹚3、﹙x-1﹚4、﹙x-1﹚5的x3的系數(shù)分別為
C
3
3
(-1)3
=-1,
C
3
4
(-1)3
=-4,
C
3
5
(-1)3
=-10,
∴多項(xiàng)式﹙x-1﹚-﹙x-1﹚2+﹙x-1﹚3-﹙x-1﹚4+﹙x-1﹚5的展開(kāi)式中的x3的系數(shù)為-1+4-10=-7.
點(diǎn)評(píng):本題考查二項(xiàng)式系數(shù)的性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且a2=
1
2
bc.
(1)求cosA的最小值;
(2)若cos(B-C)+cosA=1,求角A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從一批草莓中,隨機(jī)抽取50個(gè),其重量(單位:克)的頻數(shù)分布表如下:
分組(重量) [80,85) [85,90) [90,95) [95,100)
頻數(shù)(個(gè)) 10 50 20 15
(Ⅰ) 根據(jù)頻數(shù)分布表計(jì)算草莓的重量在[90,95)的頻率;
(Ⅱ) 用分層抽樣的方法從重量在[80,85)和[95,100)的草莓中共抽取5個(gè),其中重量在[80,85]的有幾個(gè)?
(Ⅲ) 在(Ⅱ)中抽出的5個(gè)草莓中,任取2個(gè),求重量在[80,85)和[95,100)中各有1個(gè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AC是圓O的直徑,點(diǎn)B在圓O上,∠BAC=30°,BM⊥AC交AC于點(diǎn)M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1.
(Ⅰ)證明:AB⊥BF;
(Ⅱ)求三棱錐E-BMF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
m
=(sinθ,1),
n
=(2cosθ,1),
m
n
,求tan(
π
4
+2θ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某一段公路限速60公里/小時(shí),現(xiàn)抽取200輛通過(guò)這一段公路的汽車(chē)的時(shí)速,其頻率分布直方圖如圖所示,則這200輛汽車(chē)中在該路段沒(méi)有超速的有
 
輛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
2x-x2
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為解決應(yīng)屆大學(xué)畢業(yè)生的就業(yè)問(wèn)題,一公司決定對(duì)某高校定向招聘員工,要求應(yīng)聘者在指定的三項(xiàng)技能中隨機(jī)選取兩項(xiàng)進(jìn)行考核,如果這兩項(xiàng)考核通過(guò),則該應(yīng)聘者被錄用,已知該校有20名技能水平相當(dāng)?shù)漠厴I(yè)生參加應(yīng)聘,每人在三項(xiàng)指定的技能考核中能通過(guò)的概率分別是
4
5
,
17
30
,
2
5
.假設(shè)每人在各項(xiàng)考核中能否通過(guò)的事件相互獨(dú)立.
(Ⅰ)求一應(yīng)聘者被錄用的概率;
(Ⅱ)記這些應(yīng)聘者在此次招聘中被錄用的人數(shù)為X,求均值(數(shù)學(xué)期望)EX及P(X=k)取最大值時(shí)整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“m=1”是“冪函數(shù)f(x)=x m2-2m-1在(0,+∞)上單調(diào)遞減”的
 
條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案