已知
m
=(sinθ,1),
n
=(2cosθ,1),
m
n
,求tan(
π
4
+2θ).
考點:兩角和與差的正切函數(shù),平面向量共線(平行)的坐標(biāo)表示
專題:三角函數(shù)的圖像與性質(zhì)
分析:通過向量平移,推出sinθ,cosθ的關(guān)系,然后求解tan(
π
4
+2θ).
解答: 解:∵
m
=(sinθ,1),
n
=(2cosθ,1),
m
n
,
∴sinθ=2cosθ,
∴tanθ=2.
tan2θ=
2tanθ
1-tan2θ
=-
4
3

∴tan(
π
4
+2θ)=
1+tan2θ
1-tan2θ
=
1-
4
3
1+
4
3
=-
1
7
點評:本題考查三角函數(shù)的化簡求值,兩角和與差的三角函數(shù)的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種零件按質(zhì)量標(biāo)準(zhǔn)分為1,2,3,4,5五個等級,現(xiàn)從-批該零件中隨機抽取20個,對其等級進行統(tǒng)計分析,得到頻率分布表如下:
等級 1 2 3 4 5
頻率 0.05 m 0.15 0.35 n
(1)在抽取的20個零件中,等級為5的恰有2個,求m,n的值;
(2)在(1)的條件下,從等級為3和5的所有零件中,任意抽取2個,求抽取的2個零件等級不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥平面ABC,∠ACB=90°,D為BC中點.
(Ⅰ)求證:BC⊥AA1;
(Ⅱ)求證:A1C∥平面AB1D;
(Ⅲ)若AC=AA1=BC=2,∠A1AC=60°,求三棱錐A1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2且焦距為2
2
.點M為橢圓E上的一個動點,當(dāng)MF2垂直于x軸時,恰好|MF1|:|MF2|=3:1.已知直線l與圓C:x2+y2=
4
3
相切,且與橢圓E相交于A、B兩點,O為坐標(biāo)原點.
(Ⅰ)求橢圓E的方程;
(Ⅱ)探究
OA
OB
是否為定值,若是,求出
OA
OB
的值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,a1=1,an=
Sn
n
+n-1.
(1)求證:數(shù)列{an}為等差數(shù)列,并寫出an與Sn的關(guān)于n的表達式;
(2)設(shè)數(shù)列{
1
anan+1
}的前n項和為Tn,證明:
1
3
≤Tn
1
2
;
(3)是否存在自然數(shù)n,使得2S1+
2S2
2
+
2Sn
n
-(n-2)2=2011.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求多項式﹙x-1﹚-﹙x-1﹚2+﹙x-1﹚3-﹙x-1﹚4+﹙x-1﹚5的展開式中的x3的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2-2lnx
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=x2-2bx+4,當(dāng)a=1時,若對任意x1∈(
1
2
3
2
),當(dāng)任意x2∈[2,4]時,f(x1)≥g(x2)恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-a|
(Ⅰ)當(dāng)a=2,解不等式f(x)≥4-|x-1|;
(Ⅱ)若f(x)≤1的解集為{x|0≤x≤2},
1
m
+
1
2n
=a(m>0,n>0).求證:m+2n≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
2
,b=
5
-
2
,c=
6
-
3
,則a,b,c從小到大的排列順序是
 

查看答案和解析>>

同步練習(xí)冊答案