斜三角形ABC中,命題甲:A=
π
6
,命題乙:cosB≠
1
2
,則甲是乙的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可得到結(jié)論.
解答: 解:若A=
π
6
,∵三角形ABC為斜三角形,
∴B≠
π
3
,否則C=
π
2
,此時cosB≠
1
2
,充分性成立.
若B=
3
,滿足cosB≠
1
2
,但A=
π
6
不一定成立,即必要性不成立.
故甲是乙的充分不必要條件.
故選:A.
點(diǎn)評:本題主要考查充分條件和必要條件的判斷,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從分別標(biāo)有數(shù)字1,2,3,4,5,6,7,8,9的9張卡片中任取2張,則兩數(shù)之和是奇數(shù)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B是拋物線y2=4x上異于頂點(diǎn)O的兩個點(diǎn),直線OA與直線OB的斜率之積為定值-4,△AOF,△BOF的面積為S1,S2,則S12+S22的最小值為( 。
A、8B、6C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P1(a1,b1)與P2(a2,b2)是直線y=kx+1(k為常數(shù))上兩個不同的點(diǎn),則關(guān)于x和y的方程組
a1x+b1y=1
a2x+b2y=1
的解的情況是( 。
A、無論k,P1,P2如何,總是無解
B、無論k,P1,P2如何,總有唯一解
C、存在k,P1,P2,使之恰有兩解
D、存在k,P1,P2,使之有無窮多解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<x<
π
2
,記a=lnsinx,b=sinx,c=esinx,則比較a,b,c的大小關(guān)系為( 。
A、a<b<c
B、b<a<c
C、c<b<a
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①經(jīng)過三點(diǎn)可以確定一個平面;
②復(fù)數(shù)Z=
2
i
在復(fù)平面上對應(yīng)的點(diǎn)在第四象限;
③已知平面α,β,若a∥平面α且平面α⊥平面β,則a⊥平面β;
④若回歸直線方程的斜率的估計(jì)值是1.23,樣本的中心點(diǎn)為(4,5),則回歸直線的方程是:
y
=1.23x+0.08;
以上命題中錯誤的命題個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)的圖象關(guān)于直線x=
3
對稱,它的周期為π,則( 。
A、f(x)的圖象過(0,
1
2
B、f(x)在[
π
12
,
3
]上是減函數(shù)
C、f(x)的一個對稱中心是(
12
,0)
D、將f(x)的圖象向右平移|φ|個單位得到函數(shù)y=2sinωx的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線a,b和平面α,其中a?α,b?α,則“a∥b”是“a∥α”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案