已知
(1)當(dāng)時(shí),求的極大值點(diǎn);
(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于、兩點(diǎn),過線段的中點(diǎn)做軸的垂線分別交、于點(diǎn)、,證明:在點(diǎn)處的切線與在點(diǎn)處的切線不平行.
(1);(2)證明見解析.
解析試題分析:(1)極值點(diǎn)的求法是利用導(dǎo)數(shù)知識求解,求出,求得的解,然后確定當(dāng)以及時(shí)的的符號,若當(dāng)時(shí),,當(dāng)時(shí),,則是極大值點(diǎn),反之是極小值點(diǎn);(2)題設(shè)中沒有其他的已知條件,我們只能設(shè),則的橫坐標(biāo)為,利用導(dǎo)數(shù)可得出切線的斜率,,題設(shè)要證明的否定性命題,我們用反證法,假設(shè)兩切線平行,即,也即,下面的變化特別重要,變化的意圖是把這個(gè)等式與已知函數(shù)聯(lián)系起來,等式兩邊同乘以,得
,從而等式變?yōu)?img src="http://thumb.zyjl.cn/pic5/tikupic/44/f/uwodo2.png" style="vertical-align:middle;" />,注意到,此等式為能否成立?能成立,說明存在平行,不能成立說明不能平行.設(shè),仍然用導(dǎo)數(shù)的知識來研究函數(shù)的性質(zhì),,即是增函數(shù),從而在時(shí),,即等式不可能成立,假設(shè)不成立,結(jié)論得證.
試題解析:(1)
2分
令h’(x)=0,則4x2+2x-1=0,
解出x1=,x2= 3分
4分
5分
所以的極大值點(diǎn)為 6分
(2)設(shè)P、Q的坐標(biāo)分別是.
則M、N的橫坐標(biāo).
∴C1在點(diǎn)M處的切線斜率為,
C2在點(diǎn)N處的切線斜率為. 7分
假設(shè)C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線平行,則,
即 8分
則
10分
設(shè)t=,則 ①
令
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí)函數(shù)取得極小值,求a的值;(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(I)若的定義域和值域均是,求實(shí)數(shù)的值;
(II)若在區(qū)間上是減函數(shù),且對任意的,,總有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是偶函數(shù).
(1)求的值;
(2)設(shè),若函數(shù)與的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:若在上為增函數(shù),則稱為“k次比增函數(shù)”,其中. 已知其中e為自然對數(shù)的底數(shù).
(1)若是“1次比增函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)時(shí),求函數(shù)在上的最小值;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),.
(1)解方程:;
(2)令,,求證:
(3)若是實(shí)數(shù)集上的奇函數(shù),且對任意實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)若,求證:函數(shù)是上的奇函數(shù);
(2)若函數(shù)在區(qū)間上沒有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知命題表示的曲線是雙曲線;命題函數(shù)在區(qū)間上為增函數(shù),若“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
畫出下列函數(shù)的圖象.
(1)y=2x-1,x∈Z,|x|≤2;
(2)y=2x2-4x-3(0≤x<3);
(3)y=(lgx+|lgx|).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com