【題目】在平面直角坐標(biāo)系中,設(shè)向量, ,其中的兩個(gè)內(nèi)角.

(1)若,求證: 為直角;

2)若,求證: 為銳角.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】試題分析:(1)借助平面向量的坐標(biāo)形式的數(shù)量積公式建立方程,然后運(yùn)用誘導(dǎo)公式分析推證;(2)借助平面向量的坐標(biāo)形式的數(shù)量積公式建立方程,即,也即然后運(yùn)用兩角和的正切公式分析推證,即

(1)易得

因?yàn)?/span>,所以,即.

因?yàn)?/span>,且函數(shù)內(nèi)是單調(diào)減函數(shù),

所以,即為直角.

(2)因?yàn)?/span>,所以,

.

因?yàn)?/span>是三角形內(nèi)角,所以,

于是,因而中恰有一個(gè)是鈍角,∴,

從而,

所以,即證為銳角

注:(2)解得后,得異號(hào),

于是,在中,有兩個(gè)鈍角,這與三角形內(nèi)角和定理矛盾,不可能

于是必有,即證為銳角

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿(mǎn)足:①f(0)=0,②f(x)+f(1﹣x)=1,③f( )= f(x)且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f( )+f( )等于(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD與正三角形BCE的邊長(zhǎng)均為2,它們所在平面互相垂直,F(xiàn)D⊥平面ABCD,且

(1)若∠BCD=60°,求證:BC⊥EF;
(2)若∠CBA=60°,求直線(xiàn)AF與平面FBE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)C:y2=4x,過(guò)焦點(diǎn)F斜率大于零的直線(xiàn)l交拋物線(xiàn)于A、B兩點(diǎn),且與其準(zhǔn)線(xiàn)交于點(diǎn)D.
(Ⅰ)若線(xiàn)段AB的長(zhǎng)為5,求直線(xiàn)l的方程;
(Ⅱ)在C上是否存在點(diǎn)M,使得對(duì)任意直線(xiàn)l,直線(xiàn)MA,MD,MB的斜率始終成等差數(shù)列,若存在求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中, 是自然對(duì)數(shù)的底數(shù).

(1)當(dāng)時(shí),求曲線(xiàn)處的切線(xiàn)方程;

2求函數(shù)的單調(diào)減區(qū)間;

3)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,且.

(1)求證:數(shù)列為等比數(shù)列;

2)設(shè)數(shù)列的前項(xiàng)和為,求證: 為定值;

3)判斷數(shù)列中是否存在三項(xiàng)成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題中

非零向量滿(mǎn)足,則的夾角為

0的夾角為銳角的充要條件;

必定是直角三角形;

④△ABC的外接圓的圓心為O,半徑為1,若,,則向量在向量方向上的投影為.

以上命題正確的是 __________ (注:把你認(rèn)為正確的命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體是由棱臺(tái) 和棱錐拼接而成的組合體,其底面四邊形是邊長(zhǎng)為 的菱形,且 , 平面 ,

1)求證:平面 平面 ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ,(其中, 為自然對(duì)數(shù)的底數(shù), …….

1)令,求的單調(diào)區(qū)間;

2)已知處取得極小值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案