已知A,B,C為圓O上的三點(diǎn),若
AO
=
1
2
AB
+
AC
),則
AB
AC
的夾角為
 
考點(diǎn):數(shù)量積表示兩個(gè)向量的夾角
專(zhuān)題:平面向量及應(yīng)用
分析:根據(jù)向量之間的關(guān)系,利用圓直徑的性質(zhì),即可得到結(jié)論.
解答: 解:在圓中若
AO
=
1
2
AB
+
AC
),
即2
AO
=
AB
+
AC
,
AB
+
AC
的和向量是過(guò)A,O的直徑,
則以AB,AC為鄰邊的四邊形是矩形,
AB
AC

AB
AC
的夾角為90°,
故答案為:90°
點(diǎn)評(píng):本題主要考查平面向量的夾角的計(jì)算,利用圓直徑的性質(zhì)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且b=3,c=1,△ABC的面積為
2
,求cosA與a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在8張獎(jiǎng)券中有一、二、三等獎(jiǎng)各1張,其余5張無(wú)獎(jiǎng).將這8張獎(jiǎng)券分配給4個(gè)人,每人2張,不同的獲獎(jiǎng)情況有
 
種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lgx2的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若將函數(shù)f(x)=sin(2x+
π
4
)的圖象向右平移φ個(gè)單位,所得圖象關(guān)于y軸對(duì)稱(chēng),則φ的最小正值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某三棱錐的三視圖如圖所示,則該三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高三(2)班在一次數(shù)學(xué)考試中,對(duì)甲、乙兩組各12名同學(xué)的成績(jī)進(jìn)行統(tǒng)計(jì)分析,兩組成績(jī)的莖葉圖如圖所示,成績(jī)不少于90分為及格,現(xiàn)從兩組成績(jī)中按分層抽樣抽取一個(gè)容量為6的樣本,則不及格分?jǐn)?shù)應(yīng)抽
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x2+2)(
1
x3
-1)3的展開(kāi)式中的常數(shù)項(xiàng)是( 。
A、2B、3C、-3D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)為m,公比為q(q≠1)的等比數(shù)列,Sn是它的前n項(xiàng)的和,對(duì)任意的n∈N*,點(diǎn)(an,
S2n
Sn
)在直線(xiàn)( 。┥希
A、qx+my-q=0
B、qx-my+m=0
C、mx+qy-q=0
D、qx+my+m=0

查看答案和解析>>

同步練習(xí)冊(cè)答案