【題目】已知A,B兩地的距離是120km,按交通法規(guī)規(guī)定,A,B兩地之間的公路車速應(yīng)限制在50~100km/h,假設(shè)汽油的價(jià)格是6元/升,以xkm/h速度行駛時(shí),汽車的耗油率為 ,司機(jī)每小時(shí)的工資是36元,那么最經(jīng)濟(jì)的車速是多少?如果不考慮其他費(fèi)用,這次行車的總費(fèi)用是多少?
【答案】解:設(shè)汽車以xkm/h行駛時(shí),行車的總費(fèi)用 ,50≤x≤100所以
令y′=0,解得x=60(km/h)
容易得到,x=60是函數(shù)y的極小值點(diǎn),也是最小值點(diǎn),即當(dāng)車速為60km/h時(shí),行車總費(fèi)用最少,
此時(shí)最少總費(fèi)用 (元)
答:最經(jīng)濟(jì)的車速約為60km/h;如果不考慮其他費(fèi)用,這次行車的總費(fèi)用約為240元.
【解析】設(shè)汽車以xkm/h行駛時(shí),列出行車的總費(fèi)用 ,50≤x≤100,通過函數(shù)的導(dǎo)數(shù),轉(zhuǎn)化求解函數(shù)的最值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處有極值10.
(1)求實(shí)數(shù)的值;
(2)設(shè),討論函數(shù)在區(qū)間上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間[ ,2]上,函數(shù)f(x)=x2+px+q與g(x)=2x+ 在同一點(diǎn)取得相同的最小值,那么f(x)在[ ,2]上的最大值是( )
A.
B.
C.8
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列結(jié)論中不正確的是( )
A. 的圖象關(guān)于點(diǎn)中心對(duì)稱
B. 的圖象關(guān)于直線對(duì)稱
C. 的最大值為
D. 既是奇函數(shù),又是周期函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以(﹣2,0)為圓心且與直線mx+2y﹣2m﹣6=0(m∈R)相切的所有圓中,面積最大的圓的標(biāo)準(zhǔn)方程是( )
A.(x+2)2+y2=16
B.(x+2)2+y2=20
C.(x+2)2+y2=25
D.(x+2)2+y2=36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣2x+ln(x+1)(m∈R).
(Ⅰ)判斷x=1能否為函數(shù)f(x)的極值點(diǎn),并說明理由;
(Ⅱ)若存在m∈[﹣4,﹣1),使得定義在[1,t]上的函數(shù)g(x)=f(x)﹣ln(x+1)+x3在x=1處取得最大值,求實(shí)數(shù)t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面四個(gè)命題: ①若直線a,b異面,b,c異面,則a,c異面;
②若直線a,b相交,b,c相交,則a,c相交;
③若a∥b,則a,b與c所成的角相等;
④若a⊥b,b⊥c,則a∥c.
其中真命題的個(gè)數(shù)為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖,其中成績(jī)分組區(qū)間如下:
組號(hào) | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;
(Ⅲ)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項(xiàng)為正數(shù)的等差數(shù)列,數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com