(本題滿(mǎn)分13分)已知函數(shù)
(1) 求函數(shù)的極值;
(2)求證:當(dāng)時(shí),
(3)如果,且,求證:
(1) 當(dāng)時(shí),取得極大值= ;
(2) ,則只需證當(dāng)時(shí),>0;
(3) 由⑵的結(jié)論知時(shí),>0,∴.
∵,∴.
又,∴。
解析試題分析:⑴∵=,∴=. 2分
令=0,解得.
∴當(dāng)時(shí),取得極大值=. 4分 1 + 0 - ↗ 極大值 ↘
⑵證明:,則
=. 6分
當(dāng)時(shí),<0,>2,從而<0,
∴>0,在是增函數(shù).
8分
⑶證明:∵在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).
∴當(dāng),且時(shí),、不可能在同一單調(diào)區(qū)間內(nèi).
∴, 11分
由⑵的結(jié)論知時(shí),>0,∴.
∵,∴.
又,∴ 13分
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
點(diǎn)評(píng):此題是個(gè)難題.主要考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用能力,具體涉及到用導(dǎo)數(shù)來(lái)研
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分8分)
某商店經(jīng)營(yíng)的消費(fèi)品進(jìn)價(jià)每件14元,月銷(xiāo)售量(百件)與銷(xiāo)售價(jià)格(元)的關(guān)系如下圖,每月各種開(kāi)支2000元.
(1)寫(xiě)出月銷(xiāo)售量(百件)與銷(xiāo)售價(jià)格(元)的函數(shù)關(guān)系;
(2)寫(xiě)出月利潤(rùn)(元)與銷(xiāo)售價(jià)格(元)的函數(shù)關(guān)系;
(3)當(dāng)商品價(jià)格每件為多少元時(shí),月利潤(rùn)最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分) 本題共有2個(gè)小題,第1小題滿(mǎn)分6分,第2小題滿(mǎn)分8分.
已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點(diǎn)的實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分) 已知是方程的兩個(gè)不等實(shí)根,函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/16/b/1vwmh2.png" style="vertical-align:middle;" />.
⑴當(dāng)時(shí),求函數(shù)的值域;
⑵證明:函數(shù)在其定義域上是增函數(shù);
⑶在(1)的條件下,設(shè)函數(shù),
若對(duì)任意的,總存在,使得成立,
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)是上的增函數(shù),設(shè)。
用定義證明:是上的增函數(shù);(6分)
證明:如果,則>0,(6分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
( 本題滿(mǎn)分14分)已知函數(shù)對(duì)任意實(shí)數(shù)均有,其中常數(shù)k為負(fù)數(shù),且在區(qū)間上有表達(dá)式
(1)求的值;
(2)寫(xiě)出在上的表達(dá)式,并討論函數(shù)在上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(10分)設(shè)為奇函數(shù),為常數(shù).
(1)求的值;
(2)證明在區(qū)間內(nèi)單調(diào)遞增;
(3)若對(duì)于區(qū)間[3,4]上的每一個(gè)的值,不等式>恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)已知函數(shù).
(1)作出函數(shù)的圖象;
(2)寫(xiě)出函數(shù)的單調(diào)區(qū)間;
(3)判斷函數(shù)的奇偶性,并用定義證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知函數(shù).
(1)求證:函數(shù)在上是單調(diào)遞增函數(shù);
(2)當(dāng)時(shí),求函數(shù)在上的最值;
(3)函數(shù)在上恒有成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com