已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內,且到直線l:y=x-的距離為-,點M是直線l與圓C的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,、分別是橢圓的頂點,過坐標原點的直線交橢圓于、兩點,其中在第一象限.過作軸的垂線,垂足為.連接,并延長交橢圓于點.設直線的斜率為.
(Ⅰ)當直線平分線段時,求的值;
(Ⅱ)當時,求點到直線的距離;
(Ⅲ)對任意,求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知為拋物線的焦點,拋物線上點滿足
(Ⅰ)求拋物線的方程;
(Ⅱ)點的坐標為(,),過點F作斜率為的直線與拋物線交于、兩點,、兩點的橫坐標均不為,連結、并延長交拋物線于、兩點,設直線的斜率為,問是否為定值,若是求出該定值,若不是說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,設AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F兩點,連結AE,AF分別與CD交于G、H
(Ⅰ)設EF中點為,求證:O、、B、P四點共圓
(Ⅱ)求證:OG =OH.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
四邊形ABCD的四個頂點都在拋物線上,A,C關于軸對稱,BD平行于拋物線在點C處的切線。
(Ⅰ)證明:AC平分;
(Ⅱ)若點A坐標為,四邊形ABCD的面積為4,求直線BD的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經過點且與直線相切的動圓的圓心軌跡為.點、在軌跡上,且關于軸對稱,過線段(兩端點除外)上的任意一點作直線,使直線與軌跡在點處的切線平行,設直線與軌跡交于點、.
(1)求軌跡的方程;
(2)證明:;
(3)若點到直線的距離等于,且△的面積為20,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,曲線y=x-6x+1與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點,且OA⊥OB,若存在,求出該直線方程,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com