四邊形ABCD的四個頂點都在拋物線上,A,C關于軸對稱,BD平行于拋物線在點C處的切線。
(Ⅰ)證明:AC平分;
(Ⅱ)若點A坐標為,四邊形ABCD的面積為4,求直線BD的方程。
(Ⅰ)詳見解析;(Ⅱ)y=2x
解析試題分析:(Ⅰ)依題意設出A、B、C、D四點的坐標,注意到AC的斜率為0,只需證AB、AD的斜率之和為0即可;(Ⅱ)四邊形ABCD可以AC為底分成兩個三角形求出面積,解出得到的方程即可.
試題解析:(Ⅰ)設A(x0,),B(x1,),C(-x0,),D(x2,).
對y=x2求導,得y¢=2x,則拋物線在點C處的切線斜率為-2x0.
直線BD的斜率k==x1+x2,
依題意,有x1+x2=-2x0.
記直線AB,AD的斜率分別為k1,k2,與BD的斜率求法同理,得
k1+k2=(x0+x1)+(x0+x2)=2x0+(x1+x2)=0,
所以∠CAB=∠CAD,即AC平分∠BAD.
(Ⅱ)由題設,x0=-1,x1+x2=2,k=2.四邊形ABCD的面積
S=|AC|·=|AC|·|x2+x1|·|x2-x1|
=×2×2×|2-2x1|=4|1-x1|,
由已知,4|1-x1|=4,得x1=0,或x1=2.
所以點B和D的坐標為(0,0)和(2,4),
故直線BD的方程為y=2x.
考點:1、拋物線及切線;2、直線的斜率及應用.
科目:高中數(shù)學 來源: 題型:解答題
已知點是橢圓:上一點,分別為的左右焦點,,的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,過點作直線,交橢圓異于的兩點,直線的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點,以HF、GE所在直線分別為x,y軸建立直角坐標系(如圖所示).若R、R′分別在線段0F、CF上,且.
(Ⅰ)求證:直線ER與GR′的交點P在橢圓:+=1上;
(Ⅱ)若M、N為橢圓上的兩點,且直線GM與直線GN的斜率之積為,求證:直線MN過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知、分別是橢圓: 的左、右焦點,點在直線上,線段的垂直平分線經(jīng)過點.直線與橢圓交于不同的兩點、,且橢圓上存在點,使,其中是坐標原點,是實數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當取何值時,的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內(nèi),且到直線l:y=x-的距離為-,點M是直線l與圓C的公共點,設直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓,為其右焦點,離心率為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點,問是否存在直線,使與橢圓交于兩點,且.若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
給定橢圓: ,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,且其短軸上的一個端點到的距離為.
(Ⅰ)求橢圓的方程和其“準圓”方程;
(Ⅱ)點是橢圓的“準圓”上的一個動點,過動點作直線,使得與橢圓都只有一個交點,試判斷是否垂直,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的右焦點為 ,為橢圓的上頂點,為坐標原點,且兩焦點和短軸的兩端構成邊長為的正方形.
(1)求橢圓的標準方程;
(2)是否存在直線交與橢圓于, ,且使,使得為的垂心,若存在,求出點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓(a>b>0)拋物線,從每條曲線上取兩個點,將其坐標記錄于下表中:
4 | 1 | |||
2 | 4 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com