精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓:的離心率為,且經過點.

1)求橢圓的方程;

2)直線與橢圓相交于,兩點,若,求為坐標原點)面積的最大值及此時直線的方程.

【答案】(1);(2的最大值為,

【解析】

1)根據橢圓的離心率和經過的點,以及列方程組,解方程組求得的值,進而求得橢圓方程.2)設出直線的方程,聯立直線的方程和橢圓的方程,寫出韋達定理,根據列方程,得到的關系式.求出面積的表達式,利用配方法求得面積的最大值,進而求得直線的方程.

(1)由題意 解得 故橢圓的方程為.

(2)因為,若直線斜率不存在,則直線過原點,

,不能構成三角形,所以直線的斜率一定存在,

設直線的方程為,設,

,得,

所以.

因為,所以,

,顯然,所以.

,得

到直線的距離.因為面積,

所以,

所以當時,有最大值8,即的最大值為

此時,所以直線的方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了解人們對“2019年3月在北京召開的第十三屆全國人民代表大會第二次會議和政協第十三屆全國委員會第二次會議”的關注度,某部門從年齡在15歲到65歲的人群中隨機調查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關注度非常髙的人數與年齡的統計結果如右表所示:

年齡

關注度非常高的人數

15

5

15

23

17

(Ⅰ)由頻率分布直方圖,估計這100人年齡的中位數和平均數;

(Ⅱ)根據以上統計數據填寫下面的列聯表,據此表,能否在犯錯誤的概率不超過的前提下,認為以45歲為分界點的不同人群對“兩會”的關注度存在差異?

(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再從六人中隨機選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.

45歲以下

45歲以上

總計

非常髙

一般

總計

參考數據:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設有關于x的一元二次方程

a是從0,1,2三個數中任取的一個數,b是從0,1,2,3四個數中任取的一個數,求上述方程有實根的概率;

a是從區(qū)間任取的一個數,b是從區(qū)間任取的一個數,求上述方程有實數的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數的圖象向左平移個單位長度后,再將所得的圖象向下平移一個單位長度得到函數的圖象,且的圖象與直線相鄰兩個交點的距離為,若對任意恒成立,則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為實數).

(I)討論函數的單調性;

(II)若上的恒成立,求的范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】李莊村某社區(qū)電費收取有以下兩種方案供農戶選擇:

方案一每戶每月收管理費2元,月用電不超過30度,每度0.4元,超過30度時,超過部分按每度0.5.

方案二不收管理費,每度0.48.

1求方案一收費元與用電量(度)間的函數關系;

2小李家九月份按方案一交費34元,問小李家該月用電多少度?

3)小李家月用電量在什么范圍時,選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為減少空氣污染,某市鼓勵居民用電(減少粉塵),并采用分段計費的方法計算電費.當每個家庭月用電量不超過100千瓦時時,按每千瓦時0.57元計算;當月用電量超過100千瓦時時,其中的100千瓦時仍按原標準收費,超過的部分按每千瓦時0.5元計算.

1)設月用電x千瓦時時,應交電費y元,寫出y關于x的函數關系式;

2)若某家庭一月份用電120千瓦時,則應交電費多少元?

3)若某家庭第一季度繳納電費的情況如下表:

月份

1

2

3

合計

交費金額(元)

76

63

45.6

184.6

則這個家庭第一季度共用電多少千瓦時?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,.

(1)討論函數的單調性;

(2)證明:,恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面是平行四邊形,,且底面.

(1)證明:平面平面;

(2)若二面角,求與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案