數(shù)列{an}滿足:a1=6,an+1=an2+4an+2,(n∈N*
(Ⅰ)設(shè)Cn=log2(an+2),求證:{Cn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=
1
an-2
-
1
a
2
n
+4an
,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:
7
30
≤Tn
1
4
考點(diǎn):數(shù)列與不等式的綜合,等比關(guān)系的確定
專題:等差數(shù)列與等比數(shù)列,不等式的解法及應(yīng)用
分析:(Ⅰ)把給出的數(shù)列遞推式變形得到an+1+2=(an+2)2,兩邊取以2 為底數(shù)的對(duì)數(shù)證得答案;
(Ⅱ)求出(Ⅰ)中等比數(shù)列{Cn}的通項(xiàng)公式,代回Cn=log2(an+2)可得數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)把bn=
1
an-2
-
1
a
2
n
+4an
化為bn=
1
an-2
-
1
an+1-2
,求和后代入首項(xiàng)和an+1即可證得答案.
解答: (Ⅰ)證明:由an+1=a
 
2
n
+4an+2,得an+1+2=(an+2)2,
∴l(xiāng)og2(an+1+2)=2log2(an+2),
∵Cn=log2(an+2),
即Cn+1=2Cn,
∴數(shù)列{Cn}是以2為公比的等比數(shù)列;
(Ⅱ)解:∵a1=6,
∴C1=log2(a1+2)=log28=3,
Cn=3•2n-1,即an+2=23•2n-1
an=23•2n-1-2;
(Ⅲ)證明:把an=23•2n-1-2代入bn=
1
an-2
-
1
a
2
n
+4an
,
得:bn=
1
an-2
-
1
an+1-2

Tn=(
1
a1-2
-
1
a2-2
)+(
1
a2-2
-
1
a3-2
)+…+
(
1
an-2
-
1
an+1-2
)

=
1
a1-2
-
1
an+1-2
=
1
4
-
1
23•2n-4

7
30
Tn
1
4
點(diǎn)評(píng):本題是數(shù)列與不等式綜合題,考查由遞推式確定等比關(guān)系,訓(xùn)練了裂項(xiàng)相消法求數(shù)列的和,考查了由放縮法證明不等式,屬中高檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

按照如圖所示的算法框圖,則輸出的結(jié)果是( 。
A、1005B、1006
C、1007D、1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某鄉(xiāng)鎮(zhèn)供電所為了調(diào)查農(nóng)村居民用電量情況,隨機(jī)抽取了500戶居民去年的用電量(單位:kw/h),將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如下;其中直方圖從左到右前3個(gè)小矩形的面積之比為1:2:3.
(1)該鄉(xiāng)鎮(zhèn)月均用電量在37.5~39.5之內(nèi)的居民共有多少戶?
(2)若按分層抽樣的方法從中抽出100戶作進(jìn)一步分析,則用電量在37.5~39.5內(nèi)居民應(yīng)抽取多少戶?
(3)試根據(jù)直方圖估算該鄉(xiāng)鎮(zhèn)居民月均用電量的中位數(shù)約是多少?(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P分別為AB,CB的中點(diǎn),M為底面△OBF的重心.
(Ⅰ)求證:PM∥平面AFC;
(Ⅱ)求直線AC與平面CBF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
.
2cos(x-
π
2
)
sin2x
2cos(x+
π
6
)
.
,(x∈R)
(1)求f(x)的最小正周期及判斷函數(shù)f(x)的奇偶性;
(2)在△ABC中,f(A)=0,|
AC
|=m,m∈[2,4].若對(duì)任意實(shí)數(shù)t恒有|
AB
-t
AC
|≥|
BC
|,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-
1
2
2x-x2
+
x
+
2-x
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在四棱錐P一ABCD中,底面ABCD為直角梯形,AD∥BC,∠BAD=90°,BC=2AD,AC與BD交于點(diǎn)O,點(diǎn)M,N分別在線PC、AB上,
CM
MP
=
BN
NA
=2.
(Ⅰ)求證:平面MNO∥平面PAD;
(Ⅱ)若平面PA⊥平面ABCD,∠PDA=60°,且PD=DC=BC=2,求幾何體M-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校從參加某次知識(shí)競(jìng)賽的同學(xué)中,選取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問(wèn)題.
(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ)從頻率分布直方圖中,估計(jì)本次考試成績(jī)的中位數(shù);
(Ⅲ)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績(jī)之差的絕對(duì)值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A是以BC為直徑的⊙O上一點(diǎn),AD⊥BC于點(diǎn)D,過(guò)點(diǎn)B作⊙O的切線,與CA的延長(zhǎng)線相交于點(diǎn)E,G是AD的中點(diǎn),連結(jié)CG并延長(zhǎng)與BE相交于點(diǎn)F,延長(zhǎng)AF與CB的延長(zhǎng)線相交于點(diǎn)P.
(1)求證:BF=EF;
(2)若PB=BC=3
2
,求PA的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案