【題目】已知a,bc均為正數(shù),設(shè)函數(shù)fx)=|xb||x+c|+a,xR

1)若a2b2c2,求不等式fx)<3的解集;

2)若函數(shù)fx)的最大值為1,證明:

【答案】1.(2)見解析

【解析】

1)根據(jù)a2b2c2時,將不等式fx)<3化為|x1||x+1|1,然后利用零點分段法解不等式即可;

2)根據(jù)條件利用絕對值三角不等式,可得a+b+c1,然后利用柯西不等式,即可證明

1)當(dāng)a2b2c2時,a2,bc1

不等式fx)<3化為|x1||x+1|1,

當(dāng)x1時,原不等式化為1x+1+x1,解集為;

當(dāng)﹣1x1時,原不等式化為1xx11,解得;

當(dāng)x≥1時,原不等式化為x1x11,解得x≥1

∴不等式fx)<3的解集為

2)∵

又∵a,bc0,

當(dāng)且僅當(dāng),即時等號成立,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,則方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C()的左右焦點分別為,點滿足:,且.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過點的直線lC交于不同的兩點,且,問在x軸上是否存在定點N,使得直線y軸圍成的三角形始終為底邊在y軸上的等腰三角形.若存在,求定點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子有5個不同的小球,編號分別為1,23,45,從袋中一次取出三個球,記隨機(jī)變量是取出球的最大編號與最小編號的差,數(shù)學(xué)期望為,方差為則下列選項正確的是(

A.,B.,

C.D.,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著生活節(jié)奏的加快以及智能手機(jī)的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費習(xí)慣,由此催生了一批外賣點餐平臺.已知某外賣平臺的送餐費用與送餐距離有關(guān)(該平臺只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺隨機(jī)抽取100名點外賣的用戶進(jìn)行統(tǒng)計,按送餐距離分類統(tǒng)計結(jié)果如表:

送餐距離(千米)

01]

1,2]

23]

3,4]

45]

頻數(shù)

15

25

25

20

15

以這100名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.

1)若某送餐員一天送餐的總距離為100千米,試估計該送餐員一天的送餐份數(shù);(四舍五入精確到整數(shù),且同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).

2)若該外賣平臺給送餐員的送餐費用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份7元,超過4千米為遠(yuǎn)距離,每份12元.記X為送餐員送一份外賣的收入(單位:元),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①:在平行四邊形中,,,將沿對角線折起,使,連結(jié),得到如圖②所示三棱錐.

1)證明:平面

2)若,二面角的平面角的正切值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市對一項惠民市政工程滿意程度(分值:分)進(jìn)行網(wǎng)上調(diào)查,有2000位市民參加了投票,經(jīng)統(tǒng)計,得到如下頻率分布直方圖(部分圖):

現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機(jī)抽取位市民召開座談會,其中滿意程度在的有5人.

1)求的值,并填寫下表(2000位參與投票分?jǐn)?shù)和人數(shù)分布統(tǒng)計);

滿意程度(分?jǐn)?shù))

人數(shù)

2)求市民投票滿意程度的平均分(各分?jǐn)?shù)段取中點值);

3)若滿意程度在5人中恰有2位為女性,座談會將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,BEF為山腳兩側(cè)共線的三點,在山頂A處測得這三點的俯角分別為、、,計劃沿直線BF開通穿山隧道,現(xiàn)已測得BC、DEEF三段線段的長度分別為3、1、2.

(1)求出線段AE的長度;

(2)求出隧道CD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的內(nèi)角,的對邊分別為,,.設(shè)為線段上一點,,有下列條件:

;②;③.

請從以上三個條件中任選兩個,求的大小和的面積.

查看答案和解析>>

同步練習(xí)冊答案