結(jié)構(gòu)圖一般由構(gòu)成系統(tǒng)的若干要素和表達(dá)各要素之間關(guān)系的連線(xiàn)(或方向箭頭)構(gòu)成連線(xiàn),通常按照從上到下,從左到右的方向表示要素的
 
關(guān)系或
 
的先后關(guān)系.
考點(diǎn):結(jié)構(gòu)圖
專(zhuān)題:算法和程序框圖
分析:設(shè)計(jì)的這個(gè)結(jié)構(gòu)圖從整體上要反映數(shù)的結(jié)構(gòu),從左向右要反映的是要素之間的從屬或邏輯的先后關(guān)系.在畫(huà)結(jié)構(gòu)圖時(shí),應(yīng)根據(jù)具體需要確定復(fù)雜程度.簡(jiǎn)潔的結(jié)構(gòu)圖有時(shí)能更好地反映主體要素之間的關(guān)系和系統(tǒng)的整體特點(diǎn).同時(shí),要注意結(jié)構(gòu)圖,通常按照從上到下、從左到右的方向順序表示,各要素間的從屬關(guān)系較多時(shí),常用方向箭頭示意.
解答: 解:設(shè)計(jì)的這個(gè)結(jié)構(gòu)圖從整體上要反映數(shù)的結(jié)構(gòu),從左向右要反映的是要素之間的從屬或邏輯的先后關(guān)系.
故答案為:從屬,邏輯
點(diǎn)評(píng):繪制結(jié)構(gòu)圖時(shí),首先對(duì)所畫(huà)結(jié)構(gòu)的每一部分有一個(gè)深刻的理解,從頭到尾抓住主要脈絡(luò)進(jìn)行分解.然后將每一部分進(jìn)行歸納與提煉,形成一個(gè)個(gè)知識(shí)點(diǎn)并逐一寫(xiě)在矩形框內(nèi),最后按其內(nèi)在的邏輯順序?qū)⑺鼈兣帕衅饋?lái)并用線(xiàn)段相連.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF,BE與平面ABCD所成角的正切值為
2
2

(Ⅰ)求證:直線(xiàn)AC∥平面EFB;
(Ⅱ)求二面角F-BE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b∈R+,且ab-(a+b)=1,則a+b的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的橢圓與雙曲線(xiàn)的公共焦點(diǎn)F1、F2都在x軸上,記橢圓與雙曲線(xiàn)在第一象限的交點(diǎn)為P,若△PF1F2是以PF1(F1為左焦點(diǎn))為底邊的等腰三角形,雙曲線(xiàn)的離心率為3,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z1=4+29i,z2=6+9i,其中i是虛數(shù)單位,則復(fù)數(shù)(z1-z2)i的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA為圓的切線(xiàn),切點(diǎn)為A,割線(xiàn)PCB與圓相交于B、C兩點(diǎn),弦DE經(jīng)過(guò)弦BC的中點(diǎn)Q,若AP=3
5
,CP=
15
,DE=8且DQ>QE,則QE=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C的對(duì)邊分別為a,b,c,已知8b=5c,C=2B,則cosC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知回歸直線(xiàn)
y
=
b
x+
a
斜率的估計(jì)值是
5
2
,且樣本點(diǎn)的中心為(4,5),則當(dāng)x=-2時(shí),
y
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

王明早晨在6:30~7:00之間離開(kāi)家去上學(xué),送奶員在早上6:45~7:15之把牛奶送到王明家,則王明離開(kāi)家之前能取到牛奶的概率為( 。
A、
1
8
B、
1
4
C、
7
8
D、
5
8

查看答案和解析>>

同步練習(xí)冊(cè)答案