王明早晨在6:30~7:00之間離開家去上學(xué),送奶員在早上6:45~7:15之把牛奶送到王明家,則王明離開家之前能取到牛奶的概率為( 。
A、
1
8
B、
1
4
C、
7
8
D、
5
8
考點:幾何概型
專題:概率與統(tǒng)計
分析:根據(jù)題意,設(shè)送報人到達的時間為x,小明爸爸離家去工作的時間為y;則(x,y)可以看成平面中的點,分析可得由試驗的全部結(jié)果所構(gòu)成的區(qū)域并求出其面積,同理可得事件A所構(gòu)成的區(qū)域及其面積,由幾何概型公式,計算可得答案.
解答: 解:設(shè)送奶員到達的時間為Y,王明離開家去上學(xué)的時間為X,記王明離開家之前能取到牛奶為事件A;
以橫坐標(biāo)表示牛奶送到時間,以縱坐標(biāo)表示王明離家時間,建立平面直角坐標(biāo)系,
王明離開家之前不能取到牛奶的事件構(gòu)成區(qū)域如圖示:
由于隨機試驗落在方形區(qū)域內(nèi)任何一點是等可能的,所以符合幾何概型的條件.
根據(jù)題意,只要點不落到陰影部分,就表示王明離開家之前能取到牛奶,即事件A發(fā)生,
所以P(A)=
1
2
×
1
2
×
1
2
=
1
8
,
故選:A.
點評:本題考查幾何概型的計算,解題的關(guān)鍵在于設(shè)出X、Y,將(X,Y)以及事件A在平面直角坐標(biāo)系中表示出來.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

結(jié)構(gòu)圖一般由構(gòu)成系統(tǒng)的若干要素和表達各要素之間關(guān)系的連線(或方向箭頭)構(gòu)成連線,通常按照從上到下,從左到右的方向表示要素的
 
關(guān)系或
 
的先后關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:cos[
1
2
arccos(-
3
5
)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tan(α+β)=3,tan(α-
π
4
)=
4
3
,則tan(β+
π
4
)=( 。
A、3
B、
1
3
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4名男生和2名女生站成一排,則這2名女生不相鄰的排法種數(shù)(  )
A、600B、480
C、360D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,b=2,C=60°,c=
3
,則角B的大小為( 。
A、
π
2
B、
π
6
C、
π
6
6
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個數(shù)a,b,c既是等差數(shù)列,又是等比數(shù)列,則a,b,c間的關(guān)系為(  )
A、b-a=c-b
B、b2=ac
C、a=b=c
D、
1
a
=
1
b
=
1
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)方程tan(x+
π
4
)-tan(x-
π
4
)=-2的解集為M,方程
1+tanx
1-tanx
-
tanx-1
tanx+1
=-2的解集為N,則( 。
A、M=NB、M?N
C、N?MD、M=Φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若c=acosB,則△ABC中一定為( 。
A、直角三角形
B、等腰三角形
C、等邊三角形
D、銳角三角形

查看答案和解析>>

同步練習(xí)冊答案