【題目】(本小題滿分14分)

已知, 為橢圓的左、右頂點(diǎn), 為其右焦點(diǎn), 是橢圓上異于的動(dòng)點(diǎn),且面積的最大值為

)求橢圓的方程及離心率;

)直線與橢圓在點(diǎn)處的切線交于點(diǎn),當(dāng)直線繞點(diǎn)轉(zhuǎn)動(dòng)時(shí),試判斷以

為直徑的圓與直線的位置關(guān)系,并加以證明.

【答案】解:()由題意可設(shè)橢圓的方程為

由題意知解得,

故橢圓的方程為,離心率為……6

)以為直徑的圓與直線相切.

證明如下:由題意可設(shè)直線的方程為 .

則點(diǎn)坐標(biāo)為, 中點(diǎn)的坐標(biāo)為

設(shè)點(diǎn)的坐標(biāo)為,則

所以, ……………………………10

因?yàn)辄c(diǎn)坐標(biāo)為,

當(dāng)時(shí),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.

直線軸,此時(shí)以為直徑的圓與直線相切.

當(dāng)時(shí),則直線的斜率.

所以直線的方程為

點(diǎn)到直線的距離

又因?yàn)?/span>,所以

故以為直徑的圓與直線相切.

綜上得,當(dāng)直線繞點(diǎn)轉(zhuǎn)動(dòng)時(shí),以為直徑的圓與直線相切.………14

【解析】試題分析:()根據(jù)橢圓的特征可得當(dāng)點(diǎn)在點(diǎn)時(shí), 面積最大,即可列,由題目條件知,結(jié)合,進(jìn)而求得橢圓的方程及離心率;

)設(shè),由題意可設(shè)直線的方程為,可得點(diǎn)中點(diǎn)的坐標(biāo),聯(lián)立直線與橢圓的方程得,進(jìn)而表示出點(diǎn)的坐標(biāo),結(jié)合點(diǎn),再寫(xiě)出直線的方程,根據(jù)點(diǎn)到直線的距離等于直徑的一半,進(jìn)而解得此問(wèn).

試題解析:()由題意可設(shè)橢圓的方程為,

由題意知解得

故橢圓的方程為,離心率為

)以為直徑的圓與直線相切.

證明如下:由題意可設(shè)直線的方程為

則點(diǎn)坐標(biāo)為中點(diǎn)的坐標(biāo)為

設(shè)點(diǎn)的坐標(biāo)為,則

所以,

因?yàn)辄c(diǎn)坐標(biāo)為,

當(dāng)時(shí),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

直線軸,此時(shí)以為直徑的圓與直線相切.

當(dāng)時(shí),則直線的斜率

所以直線的方程為

點(diǎn)到直線的距離

又因?yàn)?/span>,所以

故以為直徑的圓與直線相切.

綜上得,當(dāng)直線繞點(diǎn)轉(zhuǎn)動(dòng)時(shí),以為直徑的圓與直線相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線Ca0),過(guò)點(diǎn)P(-2,-4)的直線l的參數(shù)方程為t為參數(shù)),lC分別交于M,N.

1)寫(xiě)出C的平面直角坐標(biāo)系方程和l的普通方程;

2)若|PM|,|MN||PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)為2的正方體中,設(shè)是棱的中點(diǎn).

1)求證:;

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),鄭州經(jīng)濟(jì)快速發(fā)展,躋身新一線城市行列,備受全國(guó)矚目.無(wú)論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國(guó)的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢(shì)在同級(jí)別的城市內(nèi)無(wú)能出其右.為了調(diào)查鄭州市民對(duì)出行的滿意程度,研究人員隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中

1)求的值;

2)若按照分層抽樣從[50,60),[60,70)中隨機(jī)抽取8人,再?gòu)倪@8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在[50,60)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加數(shù)學(xué)與地理的學(xué)業(yè)水平測(cè)試從中隨機(jī)抽取100人的數(shù)學(xué)與地理的學(xué)業(yè)水平測(cè)試成績(jī)?nèi)缦卤恚?/span>

人數(shù)

數(shù)學(xué)

優(yōu)秀

良好

及格

地理

優(yōu)秀

7

20

5

良好

9

18

6

及格

a

4

b

成績(jī)分為優(yōu)秀、良好及格三個(gè)等級(jí),橫向縱向分別表示地理成績(jī)與數(shù)學(xué)成績(jī)例如:表示數(shù)學(xué)成績(jī)?yōu)榱己玫墓灿?/span>20+18+4=42().

()若在該樣本中,數(shù)學(xué)成績(jī)優(yōu)秀率為30%,a,b的值;

()已知a10,b8,利用樣本數(shù)據(jù)求數(shù)學(xué)成績(jī)?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,為等邊三角形,且平面平面,中點(diǎn).

1)求證:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新高考最大的特點(diǎn)就是取消文理分科,除語(yǔ)文、數(shù)學(xué)、外語(yǔ)之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門(mén)科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對(duì)全文(選擇政治、歷史、地理)的選擇是否與性別有關(guān),從某學(xué)校高一年級(jí)的1000名學(xué)生中隨機(jī)抽取男生,女生各25人進(jìn)行模擬選科.經(jīng)統(tǒng)計(jì),選擇全文的人數(shù)比不選全文的人數(shù)少10.

1)估計(jì)在男生中,選擇全文的概率.

2)請(qǐng)完成下面的列聯(lián)表;并估計(jì)有多大把握認(rèn)為選擇全文與性別有關(guān),并說(shuō)明理由;

選擇全文

不選擇全文

合計(jì)

男生

5

女生

合計(jì)

附:,其中.

P

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=x2-2ax+2(a∈R),當(dāng)x∈[-1,+∞)時(shí),恒成立,則a的取值范圍是_________

查看答案和解析>>

同步練習(xí)冊(cè)答案