【題目】如圖,在四棱錐中,,,,為等邊三角形,且平面平面,為中點.
(1)求證:平面;
(2)求二面角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)可證平面,從而得到要證的線面垂直;
(2)過點作的垂線,交于點,連結(jié),可證二面角的平面角為,利用余弦定理可求其余弦值后可得其正弦值.我們也可以建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量和平面的法向量后可求它們的夾角的余弦值,從而得到二面角的正弦值.
(1)證明:因為,,
所以,
又∵平面平面,且平面平面,平面,
∴平面,又∵平面,∴ 所以,
∵為中點,且為等邊三角形,∴,又∵,
∴平面.
(2)【法一】過點作的垂線,交于點,連結(jié),
取中點為,連接.
因為為等邊三角形,所以,
由平面平面,平面,平面平面,
所以平面,
平面,所以,由條件知,
又,所以平面,
又平面,所以,
又,所以,
所以,
由二面角的定義知,二面角的平面角為,
在中,,
由,所以,
同理可得,
又,在中,
,
所以,二面角的正弦值為.
【法二】
取中點為,連接,因為為等邊三角形,所以,
由平面平面,平面,平面平面,
所以平面,
所以,由,,
可知,所以,
以中點為坐標(biāo)原點,所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,
所以,,
所以,
由(1)知,可以為平面的法向量,
因為為的中點,
所以,
由(1)知,平面的一個法向量為,
設(shè)平面的法向量為,
由得,
取,則,
所以,
所以二面角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機抽取這兩臺車床生產(chǎn)的零件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標(biāo) | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
機床甲 | 8 | 12 | 40 | 32 | 8 |
機床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計甲機床、乙機床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機床某天生產(chǎn)50件零件,請估計甲機床該天的日利潤(單位:元);
(3)從甲、乙機床生產(chǎn)的零件指標(biāo)在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進行質(zhì)量分析,求這2件都是乙機床生產(chǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠一種溶液的成品,生產(chǎn)過程的最后工序是過濾溶液中的雜質(zhì),過濾初期溶液含雜質(zhì)為2%,每經(jīng)過一次過濾均可使溶液雜質(zhì)含量減少,記過濾次數(shù)為x()時溶液雜質(zhì)含量為y.
(1)寫出y與x的函數(shù)關(guān)系式;
(2)按市場要求,出廠成品雜質(zhì)含量不能超過0.1%,問至少經(jīng)過幾次過濾才能使產(chǎn)品達到市場要求?(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
已知, 為橢圓的左、右頂點, 為其右焦點, 是橢圓上異于, 的動點,且面積的最大值為.
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)直線與橢圓在點處的切線交于點,當(dāng)直線繞點轉(zhuǎn)動時,試判斷以
為直徑的圓與直線的位置關(guān)系,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),函數(shù),,其中為常數(shù),且,令函數(shù)為函數(shù)和的積函數(shù).
(1)求函數(shù)的表達式,并求其定義域;
(2)當(dāng)時,求函數(shù)的值域
(3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫出所有滿足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率,過點A(0,-b)和B(a,0)的直線與原點的距離為.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com