已知:四棱錐S-ABCD的底面是邊長為2的正方形,點(diǎn)S,A,B,C,D均在半徑為
3
的同一半球面上,則當(dāng)四棱錐S-ABCD的體積最大時(shí),底面ABCD的中心與頂點(diǎn)S之間的距離是
 
考點(diǎn):球內(nèi)接多面體
專題:計(jì)算題,空間位置關(guān)系與距離
分析:求出球心到平面的距離,然后判斷底面ABCD的中心與頂點(diǎn)S之間的距離即可.
解答: 解:四棱錐S-ABCD的底面是邊長為2的正方形,點(diǎn)S,A,B,C,D均在半徑為
3
的同一半球面上,則當(dāng)四棱錐S-ABCD的體積最大時(shí),頂點(diǎn)S與底面ABCD的中心的連線經(jīng)過球的中心,此時(shí)四棱錐是正四棱錐,底面中心與頂點(diǎn)S之間的距離,就是球的半徑和球心與底面中心連線的長度之差.
球心到底面中心的距離為:
3-2
=1.
所求距離為:
3
-1.
故答案為:
3
-1.
點(diǎn)評(píng):本題考查球的內(nèi)接體,幾何體的高的求法,考查空間想象能力以及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
y2
a2
-
x2
3
=1的兩個(gè)焦點(diǎn)分別為F1、F2,離心率為2.
(Ⅰ)求此雙曲線的漸近線l1、l2的方程;
(Ⅱ)若A、B分別為l1、l2上的點(diǎn),且2|AB|=5|F1F2|,求線段AB的中點(diǎn)M的軌跡方程,并說明軌跡是什么曲線;
(Ⅲ)過點(diǎn)N(1,0)能否作出直線l,使l與雙曲線交于P、Q兩點(diǎn),且
OP
OQ
=0.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為(  )
A、36π
B、8π
C、
9
2
π
D、
27
8
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上的曲線C及點(diǎn)P,在C上任取一點(diǎn)Q,定義線段PQ長度的最小值為點(diǎn)P到曲線C的距離,記作d(P,C).若曲線C1表示直線x=-
1
2
,曲線C2表示射線y=0(x≥
1
2
),則點(diǎn)集{P|d(P,C1)=d(P,C2)}所表示的圖形是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由冪函數(shù)y=x
1
2
和冪函數(shù)y=x3圖象圍成的封閉圖形面積為( 。
A、
1
12
B、
1
4
C、
1
3
D、
5
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[1,5]上任取一個(gè)數(shù)m,則函數(shù)y=x2-4x-2(0≤x≤m)的值域?yàn)閇-6,-2]的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+ϕ)+k(A>0,ω>0,|ϕ|<
π
2
)在一個(gè)周期內(nèi)的圖象,列表并填入數(shù)據(jù)得到下表:
xx1
π
6
x2
3
x3
ωx+ϕ0
π
2
π
2
f(x)y13y2-1y3
(1)求函數(shù)f(x)的解析式;
(2)三角形ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若f(B)=2,b=4,acos2
C
2
+ccos2
A
2
=6,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,5),B(6,9),且|
AM
|=3|
MB
|,M是直線AB上一點(diǎn),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,E為DC的中點(diǎn),AE與BD交于點(diǎn)E,AB=
2
,AD=1,且
MA
MB
=-
1
6
,則
AB
AD
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案