已知a,b∈R,且a2>b2(  )
A、若b<0,則a>b
B、若b>0,則a<b
C、若a>b,則a>0
D、若b>a,則b>0
考點:不等式的基本性質(zhì)
專題:不等式的解法及應(yīng)用
分析:A.取b=-1<0,取a=-2滿足條件,而a<b;
B.取b=1,a=2,而a>b,;
C.由a2>b2,可得|a|>|b|,若a>b,則a>0;
D.取b=-2,a=-3滿足條件,而b<0.
解答: 解:A.∵a2>b2,取b=-1<0,取a=-2滿足條件,而a<b,因此不正確;
B.取b=1,a=2,滿足a2>b2,而a>b,因此不正確;
C.∵a2>b2,∴|a|>|b|,若a>b,則a>0,正確;
D.∵a2>b2,∴|a|>|b|,若b>a,則b>0,不正確,例如b=-2,a=-3.
綜上可得:只有C正確.
故選:C.
點評:本題考查了不等式的基本性質(zhì),考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,下列幾種說法正確的是( 。
A、A1C1與B1C成60°角
B、D1C1⊥AB
C、AC1與DC成45°角
D、A1C1⊥AD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的焦點在y軸上,且它的一個焦點在直線5x-2y+20=0上,兩焦點關(guān)于原點對稱.
c
a
=
5
3
,則此雙曲線的方程是( 。
A、
x2
36
-
y2
64
=1
B、
x2
64
-
y2
36
=1
C、
x2
36
-
y2
64
=-1
D、
x2
64
-
y2
36
=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直線y=2x+1上有一點P,過點P且垂直于直線4x+3y-3=0的直線與圓x2+y2-2x=0有公共點,則點P的橫坐標(biāo)的取值范圍是( 。
A、(-∞,-1)∪(1,+∞)
B、(-1,1)
C、[-
12
5
,-
2
5
]
D、(-
12
5
,-
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

新余到吉安相距120千米,汽車從新余勻速行駛到吉安,速度不超過120km/h,已知汽車每小時的運輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度v(km/h)的平方成正比,比例系數(shù)為b,固定部分為a元,
(1)把全程運輸成本y(元)表示為速度v(km/h)的函數(shù);并求出當(dāng)a=50,b=
1
200
時,汽車應(yīng)以多大速度行駛,才能使得全程運輸成本最。
(2)隨著汽車的折舊,運輸成本會發(fā)生一些變化,那么當(dāng)a=
169
2
,b=
1
200
,此時汽車的速度應(yīng)調(diào)整為多大,才會使得運輸成本最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓的方程是x2+y2+2ax+2y+(a-1)2=0,0<a<1,則原點與圓的位置關(guān)系
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求點P(0,4)到圓C:x2+y2=4的切線長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使不等式x<
1
x
<x2成立的x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a,b,c,且滿足(
2
a-c)
BA
BC
=c
CB
CA
.則角B的大小為
 

查看答案和解析>>

同步練習(xí)冊答案