使不等式x<
1
x
<x2成立的x的取值范圍為
 
考點:其他不等式的解法
專題:不等式的解法及應用
分析:將不等式轉化為不等式組進行求解即可.
解答: 解:若x>0,則不等式組等價為x2<1<x3,
x2<1
x3>1
,則
-1<x<1
x>1
,此時不等式無解.
若x<0,則不等式組等價為x2>1>x3
x2>1
x3<1
x<0
,則
x>1或x<-1
x<1
x<0

解得x<-1,
綜上不等式的解集為(-∞,-1),
故答案為:(-∞,-1)
點評:本題主要考查不等式的求解,根據(jù)不等式的解法對x進行分類討論是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設A、B為橢圓
x2
16
+
y2
9
=1上任意兩點,O為坐標原點,則“OA⊥OB”是“O到直線AB的距離為
12
5
”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈R,且a2>b2( 。
A、若b<0,則a>b
B、若b>0,則a<b
C、若a>b,則a>0
D、若b>a,則b>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從裝有3個紅球和4個白球的口袋中任取2個小球,則下列選項中兩個事件是互斥事件的為( 。
A、“都是紅球”與“至少一個紅球”
B、“恰有一個紅球”與“至少一個白球”
C、“至少一個白球”與“至多一個紅球”
D、“都是紅球”與“至少一個白球”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以O為極點,x軸正半軸為極軸建立極坐標系,直線l1的極坐標方程為θ=
π
4
,與直線l2
x=2t
y=t+1
的交點為A,曲線C:
x=2
2
cosα
y=2
2
sinα

(Ⅰ)求A的極坐標;
(Ⅱ)求C過點A的切線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷下列函數(shù)的奇偶性:
(1)y=lg
tanx-1
tanx+1
;
(2)y=
2sinx-1
1+tanx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知e2-e-1=0,求e的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC.
(Ⅰ)證明:A1C⊥平面BED.
(Ⅱ)求二面角A1-DE-B大。
(Ⅲ)求A1D與平面BED所成角以及點A1到面BED的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(
3
,cos2x)
,
b
=(sin2x,-1),f(x)=
a
b

(1)求函數(shù)f(x)的單調增區(qū)間;
(2)當x∈[
24
12
]時,求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習冊答案