【題目】某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和B在任意時刻發(fā)生故障的概率分別為 和p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為 ,求p的值;
(2)設系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學期望Eξ.
【答案】
(1)解:設“至少有一個系統(tǒng)不發(fā)生故障”為事件C,則
∴ ;
(2)解:ξ的可能取值為0,1,2,3
P(ξ=0)= ;P(ξ=1)= ;
P(ξ=2)= = ;P(ξ=3)= ;
∴ξ的分布列為
ξ | 0 | 1 | 2 | 3 |
P |
數(shù)學期望Eξ=0× +1× +2× +3× =
【解析】(1)求出“至少有一個系統(tǒng)不發(fā)生故障”的對立事件的概率,利用至少有一個系統(tǒng)不發(fā)生故障的概率為 ,可求p的值;(2)ξ的所有可能取值為0,1,2,3,求出相應的概率,可得ξ的分布列與數(shù)學期望.
【考點精析】本題主要考查了離散型隨機變量及其分布列的相關知識點,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】下列有關統(tǒng)計知識的四個命題正確的是( )
A. 衡量兩變量之間線性相關關系的相關系數(shù)越接近,說明兩變量間線性關系越密切
B. 在回歸分析中,可以用卡方來刻畫回歸的效果,越大,模型的擬合效果越差
C. 線性回歸方程對應的直線至少經(jīng)過其樣本數(shù)據(jù)點中的一個點
D. 線性回歸方程中,變量每增加一個單位時,變量平均增加個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】市積極倡導學生參與綠色環(huán);顒,其中代號為“環(huán)保衛(wèi)士-”的綠色環(huán);顒有〗M對年月-年月(一月)內(nèi)空氣質量指數(shù)進行監(jiān)測,如表是在這一年隨機抽取的天的統(tǒng)計結果:
指數(shù) | |||||||
空氣質量 | 優(yōu) | 良 | 輕微污染 | 輕微污染 | 中度污染 | 中重度污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(Ⅰ)若市某企業(yè)每天由空氣污染造成的經(jīng)濟損失(單位:元)與空氣質量指數(shù)(記為)的關系為:,,在這一年內(nèi)隨機抽取一天,估計該天經(jīng)濟損失元的概率;
(Ⅱ)若本次抽取的樣本數(shù)據(jù)有天是在供暖季節(jié),其中有天為重度污染,完成列聯(lián)表,并判斷是否有的把握認為市本年度空氣重度污染與供暖有關?
下面臨界值表供參考.
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校高一年級學生某次身體素質體能測試的原始成績采用百分制,已知所有這些學生的原始成績均分布在內(nèi),發(fā)布成績使用等級制.各等級劃分標準見下表.
規(guī)定:三級為合格等級,D為不合格等級.為了解該校高一年級學生身體素質情況,從中抽取了名學生的原始成績作為樣本進行統(tǒng)計.按照的分組作出頻率分布直方圖如圖1所示,樣本中分數(shù)在80分及以上的所有數(shù)據(jù)的莖葉圖如圖2所示.
(I)求和頻率分布直方圖中的的值,并估計該校高一年級學生成績是合格等級的概率;
(II)在選取的樣本中,從兩個等級的學生中隨機抽取2名學生進行調研,求至少有一名學生是等級的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)在R上是單調遞減的一次函數(shù),且f(f(x))=4x-1.
(1)求f(x);
(2)求函數(shù)y=f(x)+x2-x在x∈[-1,2]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調區(qū)間;
(2)若函數(shù)在處取得極值,對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,動點M到兩定點A(﹣1,0)、B(2,0)構成△MAB,且∠MBA=2∠MAB,設動點M的軌跡為C.
(1)求軌跡C的方程;
(2)設直線y=﹣2x+m與y軸交于點P,與軌跡C相交于點Q、R,且|PQ|<|PR|,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】總決賽采用7場4勝制,2018年總決賽兩支球隊分別為勇士和騎士,假設每場比賽勇士獲勝的概率為0.7,騎士獲勝的概率為0.3,且每場比賽的結果相互獨立,則恰好5場比賽決出總冠軍的概率為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,P是正四面體V-ABC的面VBC上一點,點P到平面ABC距離與到點V的距離相等,則動點P的軌跡是( )
A. 直線 B. 拋物線
C. 離心率為的橢圓 D. 離心率為3的雙曲線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com