【題目】總決賽采用7場4勝制,2018年總決賽兩支球隊分別為勇士和騎士,假設(shè)每場比賽勇士獲勝的概率為0.7,騎士獲勝的概率為0.3,且每場比賽的結(jié)果相互獨立,則恰好5場比賽決出總冠軍的概率為__________.
科目:高中數(shù)學 來源: 題型:
【題目】某大學餐飲中心為了了解新生的飲食習慣,在某學院大一年級名學生中進行了抽樣調(diào)查,發(fā)現(xiàn)喜歡甜品的占.這名學生中南方學生共人。南方學生中有人不喜歡甜品.
(1)完成下列列聯(lián)表:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學生 | |||
北方學生 | |||
合計 |
(2)根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
(3)已知在被調(diào)查的南方學生中有名數(shù)學系的學生,其中名不喜歡甜品;有名物理系的學生,其中名不喜歡甜品.現(xiàn)從這兩個系的學生中,各隨機抽取人,記抽出的人中不喜歡甜品的人數(shù)為,求的分布列和數(shù)學期望.
附:.
0.15 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和B在任意時刻發(fā)生故障的概率分別為 和p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為 ,求p的值;
(2)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)10≤x1<x2<x3<x4≤104 , x5=105 , 隨機變量ξ1取值x1、x2、x3、x4、x5的概率均為0.2,隨機變量ξ2取值 、 、 、 、 的概率也均為0.2,若記Dξ1、Dξ2分別為ξ1、ξ2的方差,則( )
A.Dξ1>Dξ2
B.Dξ1=Dξ2
C.Dξ1<Dξ2
D.Dξ1與Dξ2的大小關(guān)系與x1、x2、x3、x4的取值有關(guān)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海事救援船對一艘失事船進行定位:以失事船的當前位置為原點,以正北方向為y軸正方向建立平面直角坐標系(以1海里為單位長度),則救援船恰好在失事船正南方向12海里A處,如圖,現(xiàn)假設(shè):
①失事船的移動路徑可視為拋物線 ;
②定位后救援船即刻沿直線勻速前往救援;
③救援船出發(fā)t小時后,失事船所在位置的橫坐標為7t
(1)當t=0.5時,寫出失事船所在位置P的縱坐標,若此時兩船恰好會合,求救援船速度的大小和方向.
(2)問救援船的時速至少是多少海里才能追上失事船?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在空間直角坐標系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,則直線BC1與直線AB1夾角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)當時,求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)討論的奇偶性,并說明理由;
(2)若對任意實數(shù)恒成立,求實數(shù)的取值范圍;
(3)若在上有最大值9,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com