【題目】已知函數(shù)

(1)若不等式的解集為,求a的值;

(2)在(1)的條件下,若存在,使,求t的取值范圍.

【答案】(1)2;(2).

【解析】

(1)求得不等式fx)<6的解集為a﹣3≤x≤3,再根據(jù)不等式fx)<6的解集為(﹣1,3),可得a﹣3=﹣1,由此求得a的范圍;

(2)令gx)=fx)+f(﹣x)=|2x﹣2|+|2x+2|+4,求出gx)的最小值,可得t的范圍.

(1)∵函數(shù)fx)=|2xa|+a,

不等式fx)<6的解集為(﹣1,3),

∴|2xa|<6﹣a 的解集為(﹣1,3),

由|2xa|<6﹣a,可得a﹣6<2x+a<6﹣a,求得a﹣3≤x≤3,

故有a﹣3=﹣1,a=2.

(2)在(1)的條件下,fx)=|2x﹣2|+2,

gx)=fx)+f(﹣x)=|2x﹣2|+|2x+2|+4=

gx)的最小值為8,

故使fx)≤tf(﹣x)有解的實(shí)數(shù)t的范圍為[8,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是平面內(nèi)互不平行的三個(gè)向量,,有下列命題:

方程不可能有兩個(gè)不同的實(shí)數(shù)解;

方程有實(shí)數(shù)解的充要條件是;

方程有唯一的實(shí)數(shù)解;

方程沒有實(shí)數(shù)解.

其中真命題有 .(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長為6,寬為3的矩形折成正三棱柱,三棱柱的高度為3,矩形的對(duì)角線和三棱柱的側(cè)棱的交點(diǎn)記為E,F.

(1)求三棱柱的體積;

(2)求三棱柱中異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校健康社團(tuán)為調(diào)查本校大學(xué)生每周運(yùn)動(dòng)的時(shí)長,隨機(jī)選取了80名學(xué)生,調(diào)查他們每周運(yùn)動(dòng)的總時(shí)長(單位:小時(shí)),按照6組進(jìn)行統(tǒng)計(jì),得到男生、女生每周運(yùn)動(dòng)的時(shí)長的統(tǒng)計(jì)如下(表1、2),規(guī)定每周運(yùn)動(dòng)15小時(shí)以上(含15小時(shí))的稱為“運(yùn)動(dòng)合格者”,其中每周運(yùn)動(dòng)25小時(shí)以上(含25小時(shí))的稱為“運(yùn)動(dòng)達(dá)人”.

1:男生

時(shí)長

人數(shù)

2

8

16

8

4

2

2:女生

時(shí)長

人數(shù)

0

4

12

12

8

4

1)從每周運(yùn)動(dòng)時(shí)長不小于20小時(shí)的男生中隨機(jī)選取2人,求選到“運(yùn)動(dòng)達(dá)人”的概率;

2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為本校大學(xué)生是否為“運(yùn)動(dòng)合格者”與性別有關(guān).

每周運(yùn)動(dòng)的時(shí)長小于15小時(shí)

每周運(yùn)動(dòng)的時(shí)長不小于15小時(shí)

總計(jì)

男生

女生

總計(jì)

參考公式:,其中.

參考數(shù)據(jù):

0.40

0.25

0.10

0.010

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點(diǎn)的極坐標(biāo)為.

1)求曲線的極坐標(biāo)方程;

2)若過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

非體育迷

體育迷

合計(jì)

10

55

合計(jì)

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?

(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進(jìn)行訪談,被抽取的2名觀眾中至少有一名女生的概率.

附:

PK2k

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面是等邊三角形,且平面平面的中點(diǎn),,,,

1)求證:平面

2)求二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,為正三角形,且.

(1)證明:直線平面;

(2)若四棱錐的體積為,是線段的中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案