【題目】已知函數(shù)f(x)= +x在x=1處的切線(xiàn)方程為2x﹣y+b=0.
(1)求實(shí)數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=f(x)+ x2﹣kx,且g(x)在其定義域上存在單調(diào)遞減區(qū)間(即g′(x)<0在其定義域上有解),求實(shí)數(shù)k的取值范圍.

【答案】
(1)解:∵f(x)= +x,

∴f′(x)= +1,

∵f(x)= +x在x=1處的切線(xiàn)方程為2x﹣y+b=0,

+1=2,2﹣1+b=0,

∴a=1,b=﹣1;


(2)解:f(x)=lnx+x,g(x)= x2﹣kx+lnx+x,

∴g′(x)=x﹣k+ +1,

∵g(x)在其定義域上存在單調(diào)遞減區(qū)間,

∴g′(x)<0在其定義域上有解,

∴x﹣k+ +1<0在其定義域上有解,

∴k>x+ +1在其定義域上有解,

∴k>3.


【解析】(1)求導(dǎo)數(shù),利用函數(shù)f(x)= +x在x=1處的切線(xiàn)方程為2x﹣y+b=0,建立方程組求實(shí)數(shù)a,b的值;(2)g(x)在其定義域上存在單調(diào)遞減區(qū)間,即g′(x)<0在其定義域上有解,分離參數(shù)求最值,即可求實(shí)數(shù)k的取值范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)f(x)=sin(2x+φ)的圖象向左平移 個(gè)單位后,所得圖象關(guān)于y軸對(duì)稱(chēng),則φ可以為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正三角形中, 分別是邊上的點(diǎn),滿(mǎn)足 (如圖),將沿折起到的位置,使二面角成直二面角,連接 (如圖).

(1) 求證: 平面;

(2)求二面角的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左頂點(diǎn)為,且橢圓與直線(xiàn)相切,

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的動(dòng)直線(xiàn)與橢圓交于兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn),是否存在常數(shù),使得?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1= ,an= (n≥2,n∈N+).
(1)求a2 , a3 , a4的值,并猜想數(shù)列{an}的通項(xiàng)公式an
(2)用數(shù)學(xué)歸納法證明你猜想的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是正方形, 平面, , .

(1)求證: 平面

(2)求證: 平面;

(3)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙丙三人在進(jìn)行一項(xiàng)投擲骰子游戲中規(guī)定:若擲出1點(diǎn),甲得1分,若擲出2點(diǎn)或3點(diǎn),乙得1分;若擲出4點(diǎn)或5點(diǎn)或6點(diǎn),丙得1分,前后共擲3次,設(shè)x,y,z分別表示甲、乙、丙三人的得分.
(1)求x=0,y=1,z=2的概率;
(2)記ξ=x+z,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿(mǎn)足x2﹣4ax+3a2<0(a>0),命題q:實(shí)數(shù)x滿(mǎn)足 ≤0,
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)g(x)= 是奇函數(shù),f(x)=lg(10x+1)+bx是偶函數(shù).
(1)求a+b的值.
(2)若對(duì)任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案