【題目】已知曲線C的參數(shù)方程為(為參數(shù)),P是曲線C上的點(diǎn)且對(duì)應(yīng)的參數(shù)為,.直線l過(guò)點(diǎn)P且傾斜角為.
(1)求曲線C的普通方程和直線l的參數(shù)方程.
(2)已知直線l與x軸,y軸分別交于,求證:為定值.
【答案】(1);(t為參數(shù))(2)證明見(jiàn)解析
【解析】
(1)由曲線C的參數(shù)方程為,利用消去參數(shù)可得曲線C的普通方程, 由直線l過(guò)點(diǎn)且傾斜角為,所以直線l的參數(shù)方程為,化簡(jiǎn)可得答案.
(2)由,所以,由直線l與x軸,y軸分別交于,可得A對(duì)應(yīng)的參數(shù), B對(duì)應(yīng)的參數(shù)的值,計(jì)算可得為定值.
(1)解:曲線C的普通方程為,
因?yàn)橹本l過(guò)點(diǎn)且傾斜角為,
所以直線l的參數(shù)方程為,
即(t為參數(shù)).
(2)證明:因?yàn)?/span>,所以,
所以由,得A對(duì)應(yīng)的參數(shù),
由,得B對(duì)應(yīng)的參數(shù),
所以為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于點(diǎn),點(diǎn)的坐標(biāo)為(3,1),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(I)討論在上的單調(diào)性;
(Ⅱ)若對(duì)任意的正整數(shù)n都有成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)對(duì)定義域內(nèi)的任意,當(dāng)時(shí),總有,則稱函數(shù)為單調(diào)函數(shù),例如函數(shù)是單純函數(shù),但函數(shù)不是單純函數(shù),下列命題:
①函數(shù)是單純函數(shù);
②當(dāng)時(shí),函數(shù)在是單純函數(shù);
③若函數(shù)為其定義域內(nèi)的單純函數(shù), ,則
④若函數(shù)是單純函數(shù)且在其定義域內(nèi)可導(dǎo),則在其定義域內(nèi)一定存在使其導(dǎo)數(shù),其中正確的命題為__________.(填上所有正確的命題序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項(xiàng)和為,則下列說(shuō)法中正確的是( )
A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列
C.數(shù)列的最大項(xiàng)是D.數(shù)列的最大項(xiàng)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本學(xué)期開(kāi)學(xué)前后,國(guó)務(wù)院下發(fā)了《新一代人工智能發(fā)展規(guī)劃》,要求從小學(xué)教育,中學(xué)教育,到大學(xué)院校,逐步新增人工智能課程,建設(shè)全國(guó)人才梯隊(duì),凸顯了我國(guó)搶占人工智能新高地的決心和信心.如圖,三臺(tái)機(jī)器人、、和檢測(cè)臺(tái)(位置待定)(與、、共線但互不重合),三臺(tái)機(jī)器人需把各自生產(chǎn)的零件送交處進(jìn)行檢測(cè),送檢程序如下:當(dāng)把零件送達(dá)處時(shí),即刻自動(dòng)出發(fā)送檢;當(dāng)把零件送達(dá)處時(shí),即刻自動(dòng)出發(fā)送檢.設(shè)、的送檢速度的大小為2,的送檢速度大小為1.則三臺(tái)機(jī)器人、、送檢時(shí)間之和的最小值為( ).
A.8B.6C.5D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A的坐標(biāo)為(2,0),B是第一象限內(nèi)的一點(diǎn),以C為圓心的圓經(jīng)過(guò)OAB三點(diǎn),且圓C在點(diǎn)A,B處的切線相交于P,若P的坐標(biāo)為(4,2),則直線PB的方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是橢圓的左、右焦點(diǎn),橢圓的短軸長(zhǎng)為,點(diǎn)是橢圓上的一點(diǎn),過(guò)點(diǎn)作軸的垂線交橢圓于另一點(diǎn)(不過(guò)點(diǎn)),且的周長(zhǎng)的最大值為8.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過(guò)焦點(diǎn),在橢圓上取兩點(diǎn),連接,與軸的交點(diǎn)分別為,過(guò)點(diǎn)作橢圓的切線,當(dāng)四邊形為菱形時(shí),證明:直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解高一新生的體能情況,在入學(xué)后不久,組織了一次體能測(cè)試,按成績(jī)分為優(yōu)秀、良好、一般、較差四個(gè)檔次.現(xiàn)隨機(jī)抽取120名學(xué)生的成績(jī),其條形圖如下:
(1)將優(yōu)秀、良好、一般歸為合格,較差歸為不合格,試根據(jù)條形圖完成下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為學(xué)生的成績(jī)與性別有關(guān).
合格 | 不合格 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
(2)學(xué)校為了解學(xué)生以前參加課外活動(dòng)的情況,利用分層抽樣的方法從120名學(xué)生中抽取24名學(xué)生參加一個(gè)座談會(huì).
①座談會(huì)上抽取2名學(xué)生匯報(bào)以前參加課外活動(dòng)的情況,求恰好抽到測(cè)試成績(jī)一個(gè)優(yōu)秀與一個(gè)較差的學(xué)生的概率;
②為全面提高學(xué)生的體能,學(xué)校專門(mén)安排專職教師對(duì)全校測(cè)試成績(jī)較差的學(xué)生在課外活動(dòng)時(shí)進(jìn)行專項(xiàng)訓(xùn)練,通過(guò)一段時(shí)間的訓(xùn)陳后,測(cè)試合格率達(dá)到了.若某班有4名學(xué)生參加這個(gè)專項(xiàng)訓(xùn)陳,求訓(xùn)練后測(cè)試合格人數(shù)ξ的分布列與數(shù)學(xué)期望.
附:K2,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com