【題目】已知函數(shù)

I)討論上的單調(diào)性;

(Ⅱ)若對任意的正整數(shù)n都有成立,求a的取值范圍.

【答案】I)當(dāng)時,上遞減.當(dāng)時,上遞減,在上遞增.當(dāng)時,上遞增.II

【解析】

I)求得的導(dǎo)函數(shù),對分成等四種情況,討論的單調(diào)性.

II)將不等式轉(zhuǎn)化為,構(gòu)造,利用的導(dǎo)函數(shù),結(jié)合(I)的結(jié)論,求得的取值范圍.

I)依題意

當(dāng)時,,所以上遞減.

當(dāng)時,令解得.

當(dāng)時,,所以上遞減,在上遞增.

當(dāng)時,上遞增.

當(dāng)時,,所以上遞增.

綜上所述,當(dāng)時,上遞減.當(dāng)時,上遞減,在上遞增.當(dāng)時,上遞增.

II)不等式兩邊取以為底的對數(shù),可轉(zhuǎn)化為,令,故要對任意的正整數(shù)n都有成立,只需對任意,有..

由(I)知:

當(dāng)時,上遞增,所以,符合題意.

當(dāng)時,上遞減,,不符合題意.

當(dāng)時,上遞減,所以當(dāng)時,,不符合題意.

當(dāng)時,上遞減,,不符合題意.

綜上所述,的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其定義域為.(其中常數(shù),是自然對數(shù)的底數(shù))

1)求函數(shù)的遞增區(qū)間;

2)若函數(shù)為定義域上的增函數(shù),且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的圖象為C,下面結(jié)論正確的是( )

A.函數(shù)f(x)的最小正周期是2π.

B.函數(shù)f(x)在區(qū)間上是遞增的

C.圖象C關(guān)于點對稱

D.圖象C由函數(shù)g(x)=sin2x的圖象向左平移個單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到定點和到直線的距離之比為,設(shè)動點的軌跡為曲線,過點作垂直于軸的直線與曲線相交于兩點,直線與曲線交于兩點,與相交于一點(交點位于線段上,且與不重合).

(1)求曲線的方程;

(2)當(dāng)直線與圓相切時,四邊形的面積是否有最大值?若有,求出其最大值及對應(yīng)的直線的方程;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,是等邊三角形,已知

(1)設(shè)上的一點,證明:平面平面

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】因客流量臨時增大,某鞋店擬用一個高為50(即)的平面鏡自制一個豎直擺放的簡易鞋鏡,根據(jù)經(jīng)驗:一般顧客的眼睛到地面的距離為)在區(qū)間內(nèi),設(shè)支架高為,,顧客可視的鏡像范圍為(如圖所示),記的長度為).

(I)當(dāng)時,試求關(guān)于的函數(shù)關(guān)系式和的最大值;

(II)當(dāng)顧客的鞋在鏡中的像滿足不等關(guān)系(不計鞋長)時,稱顧客可在鏡中看到自己的鞋,若使一般顧客都能在鏡中看到自己的鞋,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程為為參數(shù)),P是曲線C上的點且對應(yīng)的參數(shù)為,.直線l過點P且傾斜角為.

1)求曲線C的普通方程和直線l的參數(shù)方程.

2)已知直線lx軸,y軸分別交于,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程是

1)寫出曲線的普通方程和的直角坐標方程;

2)求上的點到距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案