精英家教網 > 高中數學 > 題目詳情

【題目】若函數對定義域內的任意,當時,總有,則稱函數為單調函數,例如函數是單純函數,但函數不是單純函數,下列命題:

①函數是單純函數;

②當時,函數是單純函數;

③若函數為其定義域內的單純函數, ,則

④若函數是單純函數且在其定義域內可導,則在其定義域內一定存在使其導數,其中正確的命題為__________.(填上所有正確的命題序號)

【答案】①③

【解析】由題設中提供的“單純函數”的定義可知:當函數是單調函數時,該函數必為單純函數。因為時, 單調,所以是單純函數;當時, 單調,所以是單純函數,故命題①是正確的;對于命題②,由于不單調,故不是單純函數;由于單調函數一定是單純函數,故當,則,即命題③是正確的;對于命題④,由于單純函數一定是單調函數,所以在定義域內不存在極值點,故是錯誤的,應填答案①③。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】直線y=x+b與曲線x= 恰有一個公共點,則b的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= cosx(sinx+cosx). (Ⅰ)若0<α< ,且sinα= ,求f(α)的值;
(Ⅱ)求函數f(x)的最小正周期及單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知公差d>0的等差數列{an}中,a1=10,且a1 , 2a2+2,5a3成等比數列.
(1)求公差d及通項an;
(2)設Sn= + +…+ ,求證:Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 (其中a為非零實數),且方程 有且僅有一個實數根. (Ⅰ)求實數a的值;
(Ⅱ)證明:函數f(x)在區(qū)間(0,+∞)上單調遞減.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,底面ABCD是棱長為2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC中點,若H為PD上的動點,EH與平面PAD所成最大角的正切值為
(1)當EH與平面PAD所成角的正切值為 時,求證:EH∥平面PAB;
(2)在(1)的條件下,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拖延癥總是表現在各種小事上,但日積月累,特別影響個人發(fā)展.某校的一個社會實踐調查小組,在對該校學生進行“是否有明顯拖延癥”的調查中,隨機發(fā)放了110份問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯表:

有明顯拖延癥

無明顯拖延癥

合計

35

25

60

30

10

40

合計

65

35

100

(Ⅰ)按女生是否有明顯拖延癥進行分層,已經從40份女生問卷中抽取了8份問卷,現從這8份問卷中再隨機抽取3份,并記其中無明顯拖延癥的問卷的份數為,試求隨機變量的分布列和數學期望;

(Ⅱ)若在犯錯誤的概率不超過的前提下認為無明顯拖延癥與性別有關,那么根據臨界值表,最精確的的值應為多少?請說明理由.

附:獨立性檢驗統(tǒng)計量,其中

獨立性檢驗臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給定橢圓,稱圓心在原點,半徑為的圓是橢圓準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.

1)求橢圓的方程和其準圓方程;

2)點是橢圓準圓上的動點,過點作橢圓的切線準圓于點.

當點準圓軸正半軸的交點時,求直線的方程并證明;

求證:線段的長為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉軸旋轉,有下列結論:

當直線AB與a成60°角時,AB與b成30°角;

當直線AB與a成60°角時,AB與b成60°角;

直線AB與a所稱角的最小值為45°;

直線AB與a所稱角的最小值為60°;

其中正確的是________。(填寫所有正確結論的編號)

查看答案和解析>>

同步練習冊答案