【題目】如圖所示,某班一次數(shù)學(xué)測試成績的莖葉圖(如圖甲)和頻率分布直方圖(如圖乙)都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為,據(jù)此解答如下問題.(注:直方圖中對應(yīng)的長方形的高度一樣)

(1)若按題中的分組情況進(jìn)行分層抽樣,共抽取人,那么成績在之間應(yīng)抽取多少人?

(2)現(xiàn)從分?jǐn)?shù)在之間的試卷中任取份分析學(xué)生失分情況,設(shè)抽取的試卷分?jǐn)?shù)在之間 份數(shù)為,求的分布列和數(shù)學(xué)期望.

【答案】(1)人;(2)見解析.

【解析】【試題分析】(1)依據(jù)題設(shè)運(yùn)用分層抽樣方法的有關(guān)知識(shí)求解;(2)借助題設(shè)條件運(yùn)用隨機(jī)變量的概率分布及數(shù)學(xué)期望公式分析求解:

(1)由莖葉圖知分?jǐn)?shù)在的人數(shù)為,的人數(shù)為,的人數(shù)為,

由頻率分布直方圖知:的人數(shù)都為

故總?cè)藬?shù)為,∴分?jǐn)?shù)在的人數(shù)為:,

∴成績在之間應(yīng)抽:人.

(2)∵分?jǐn)?shù)在的人數(shù)為,分?jǐn)?shù)在的人數(shù)為,

的可能取值為:,

的分布列為

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,嵩山上原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了一條索道AC,小李在山腳B處看索道AC,發(fā)現(xiàn)張角∠ABC=120°;從B處攀登400米到達(dá)D處,回頭看索道AC,發(fā)現(xiàn)張角∠ADC=150°;從D處再攀登800米方到達(dá)C處,則索道AC的長為________米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期為.

(1)求ω的值;

(2)在△ABC中,sinB,sinA,sinC成等比數(shù)列,求此時(shí)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①點(diǎn)P(-1,4)到直線3x+4y =2的距離為3.

②過點(diǎn)M(-3,5)且在兩坐標(biāo)軸上的截距互為相反數(shù)的直線方程為.

③命題“x∈R,使得x2﹣2x+10”的否定是真命題;

④“x ≤1,且y≤1”是“x + y ≤2”的充要條件.

其中不正確命題的序號(hào)是 _______________  .(把你認(rèn)為不正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某幾何體的三視圖,則該幾何體的體積為( )

A. 12 B. 15 C. 18 D. 21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某批零件共160個(gè),其中一級品有48,二級品有64個(gè),三級品有32個(gè),等外品有16個(gè).從中抽取一個(gè)容量為20的樣本.試簡要敘述用簡單隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣法進(jìn)行抽樣都是等可能抽樣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若為曲線的一條切線,求a的值;

(2)已知,若存在唯一的整數(shù),使得,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中錯(cuò)誤的是( )

A. 在一次試卷分析中,從每個(gè)考室中抽取第5號(hào)考生的成績進(jìn)行統(tǒng)計(jì),不是簡單隨機(jī)抽樣

B. 對一個(gè)樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如下:

區(qū)間

頻數(shù)

1

1

3

3

18

16

28

30

估計(jì)小于29的數(shù)據(jù)大約占總體的

C. 設(shè)產(chǎn)品產(chǎn)量與產(chǎn)品質(zhì)量之間的線性相關(guān)系數(shù)為,這說明二者存在著高度相關(guān)

D. 通過隨機(jī)詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如表列聯(lián)表.

,則有以上的把握認(rèn)為“選擇過馬路方式與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為其導(dǎo)函數(shù).

(1) 設(shè),求函數(shù)的單調(diào)區(qū)間;

(2) 若, 設(shè) 為函數(shù)圖象上不同的兩點(diǎn),且滿足,設(shè)線段中點(diǎn)的橫坐標(biāo)為 證明: .

查看答案和解析>>

同步練習(xí)冊答案