【題目】【2017湖南婁底二模】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如下表:
質(zhì)量指標(biāo)值 | |||
等級(jí) | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:
(Ⅰ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品92%”的規(guī)定?
(Ⅱ)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(Ⅲ)該企業(yè)為提高產(chǎn)品質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后在抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?
【答案】(Ⅰ)見(jiàn)解析; (Ⅱ);(Ⅲ)大約提升了17.6
【解析】試題分析:(Ⅰ)計(jì)算一、二等品所占比例的估計(jì)值與0.92比較即可;
(Ⅱ)由分層抽樣的原理確定一等品3件,二等品4件,三等品1件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,利用古典概型的原理求解即可;
(Ⅲ)計(jì)算平均值和218比較即可.
試題解析:
(Ⅰ)根據(jù)抽樣調(diào)查數(shù)據(jù),一、二等品所占比例的估計(jì)值為 ,由于該估計(jì)值小于0.92,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品92%”的規(guī)定.
(Ⅱ)由頻率分布直方圖知,一、二、三等品的頻率分別為0.375、0.5、0.125,故在樣本中用分層抽樣方法抽取的8件產(chǎn)品中,一等品3件,二等品4件,三等品1件.再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,一、二、三等品都有的情形有2種:①一等品2件,二等品1件,三等品1件;②一等品1件,二等品2件,三等品1件.故所求的概率 .
(Ⅲ)“質(zhì)量提升月”活動(dòng)前,該企業(yè)這種產(chǎn)品的質(zhì)量指標(biāo)值的均值約為
,
“質(zhì)量提升月”活動(dòng)后,產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則.
所以,“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了17.6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】政府鼓勵(lì)創(chuàng)新、創(chuàng)業(yè),銀行給予低息貸款.一位大學(xué)畢業(yè)生向自主創(chuàng)業(yè),經(jīng)過(guò)市場(chǎng)調(diào)研、測(cè)算,有兩個(gè)方案可供選擇.
方案1:開(kāi)設(shè)一個(gè)科技小微企業(yè),需要一次性貸款40萬(wàn)元,第一年獲利是貸款額的10%,以后每年比上一年增加25%的利潤(rùn).
方案2:開(kāi)設(shè)一家食品小店,需要一次性貸款20萬(wàn)元,第一年獲利是貸款額的15%,以后每年比上一年增加利潤(rùn)1.5萬(wàn)元.兩種方案使用期限都是10年,到期一次性還本付息.兩種方案均按年息2%的復(fù)利計(jì)算(參考數(shù)據(jù):1.259=7.45,1.2510=9.3,1.029=1.20,1.0210=1.22).
(1)10年后,方案1,方案2的總收入分別有多少萬(wàn)元?
(2)10年后,哪一種方案的利潤(rùn)較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017福建三明5月質(zhì)檢】已知直線與拋物線相切,且與軸的交點(diǎn)為,點(diǎn).若動(dòng)點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長(zhǎng)為6.
(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ) 設(shè)斜率為的直線交曲線于兩點(diǎn),當(dāng),且位于直線的兩側(cè)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x2﹣3x.則關(guān)于x的方程f(x)=x+3的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017湖南長(zhǎng)沙二!磕撤N產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等極如下表:
質(zhì)量指標(biāo)值 | |||
等級(jí) | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù) ,能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017安徽阜陽(yáng)二!恳黄髽I(yè)從某生產(chǎn)線上隨機(jī)抽取件產(chǎn)品,測(cè)量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值,得到的頻率分布直方圖如圖.
(1)估計(jì)該技術(shù)指標(biāo)值平均數(shù);
(2)在直方圖的技術(shù)指標(biāo)值分組中,以落入各區(qū)間的頻率作為取該區(qū)間值的頻率,若,則產(chǎn)品不合格,現(xiàn)該企業(yè)每天從該生產(chǎn)線上隨機(jī)抽取件產(chǎn)品檢測(cè),記不合格產(chǎn)品的個(gè)數(shù)為,求的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓mx2+ny2=1與直線x+y﹣1=0相交于A,B兩點(diǎn),過(guò)AB中點(diǎn)M與坐標(biāo)原點(diǎn)的直線的斜率為 ,則 的值為( )
A.
B.
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)滿足g(x)=g′(1)ex﹣1﹣g(0)x+ ,且存在實(shí)數(shù)x0使得不等式2m﹣1≥g(x0)成立,則m的取值范圍為( )
A.(﹣∞,2]
B.(﹣∞,3]
C.[1,+∞)
D.[0,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com