【題目】政府鼓勵創(chuàng)新、創(chuàng)業(yè),銀行給予低息貸款.一位大學畢業(yè)生向自主創(chuàng)業(yè),經過市場調研、測算,有兩個方案可供選擇.
方案1:開設一個科技小微企業(yè),需要一次性貸款40萬元,第一年獲利是貸款額的10%,以后每年比上一年增加25%的利潤.
方案2:開設一家食品小店,需要一次性貸款20萬元,第一年獲利是貸款額的15%,以后每年比上一年增加利潤1.5萬元.兩種方案使用期限都是10年,到期一次性還本付息.兩種方案均按年息2%的復利計算(參考數據:1.259=7.45,1.2510=9.3,1.029=1.20,1.0210=1.22).
(1)10年后,方案1,方案2的總收入分別有多少萬元?
(2)10年后,哪一種方案的利潤較大?
【答案】
(1)解:方案1是等比數列,方案2是等差數列,
①方案1,一次性貸款40萬元,第一年獲利是貸款額的10%,即4萬元
獲利:4[1+(1+25%)+(1+25%)2+…+(1+25%)9]=4× =132.8(萬元),
銀行貸款本息:40(1+2%)10≈48.8(萬元),
方案2,一次性貸款20萬元,第一年獲利是貸款額的15%,即3萬元
獲利:3+(3+1.5)+(3+2×1.5)+…+(3+9×1.5)
=10×3+ =97.50(萬元)
(2)解:方案1,銀行貸款本息:40(1+2%)10≈12.2(萬元),
故方案1純利:132.8﹣48.8=84(萬元).
方案2,銀行貸款本息:20(1+2%)10≈24.4(萬元),
故方案2純利:97.50﹣24.4=73.1(萬元).
∴方案1的利潤較大.
【解析】(1)方案1是等比數列,方案2是等差數列,利用求和公式,可得結論;(2)計算銀行貸款本息,可得純利,即可得出哪一種方案的利潤較大.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex+2ax(a為常數)的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為﹣1.
(1)求a的值及函數f(x)的極值;
(2)證明:當x>0時,x2+1<ex .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數據:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程;
(2)試預測廣告費支出為10萬元時,銷售額多大?
(3)在已有的五組數據中任意抽取兩組,求至少有一組數據其預測值與實際值之差的絕對值不超過5的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017湖南婁底二!磕撤N產品的質量以其質量指標值衡量,并依據質量指標值劃分等級如下表:
質量指標值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:
(Ⅰ)根據以上抽樣調查數據,能否認為該企業(yè)生產的這種產品符合“一、二等品至少要占全部產品92%”的規(guī)定?
(Ⅱ)在樣本中,按產品等級用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;
(Ⅲ)該企業(yè)為提高產品質量,開展了“質量提升月”活動,活動后在抽樣檢測,產品質量指標值近似滿足,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①已知集合A={1,a},B={1,2,3},則“a=3”是“AB”的充分不必要條件;
②“x<0”是“l(fā)n(x+1)<0”的必要不充分條件;
③“函數f(x)=cos2ax﹣sin2ax的最小正周期為π”是“a=1”的充要條件;
④“平面向量 與 的夾角是鈍角”的充要條件的“ <0”.
其中正確命題的序號是(把所有正確命題的序號都寫上)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com