【題目】已知焦點(diǎn)在軸上的橢圓的中心是原點(diǎn),離心率為雙曲線離心率的一半,直線被橢圓截得的線段長(zhǎng)為.直線 軸交于點(diǎn),與橢圓交于兩個(gè)相異點(diǎn),且.

(1)求橢圓的方程;

(2)是否存在實(shí)數(shù),使?若存在,求的取值范圍;若不存在,請(qǐng)說明理由.

【答案】() ()

【解析】試題分析:(Ⅰ)設(shè)出橢圓的標(biāo)準(zhǔn)方程,利用離心率、四邊形的周長(zhǎng)進(jìn)行求解;(Ⅱ)利用平面向量的線性運(yùn)算得到的關(guān)系,聯(lián)立直線與橢圓的方程,得到關(guān)于的一元二次方程,利用橢圓的對(duì)稱性、平面向量的坐標(biāo)運(yùn)算和判別式進(jìn)行求解.

試題解析:()根據(jù)已知設(shè)橢圓的方程為,焦距為,

由已知得,.

以橢圓的長(zhǎng)軸和短軸為對(duì)角線的四邊形的周長(zhǎng)為,

.

橢圓的方程為.

)根據(jù)已知得,由,得.

.,,

,由橢圓的對(duì)稱性得,即.

能使成立.

,則,解得.

設(shè),由,

由已知得,即.

.…10

,即.,

,即.

當(dāng)時(shí), 不成立.,

,,.

,解得.

綜上述,當(dāng)時(shí), .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)。

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“數(shù)學(xué)物理不分家,如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題!蹦嘲噌槍(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論,F(xiàn)從該班隨機(jī)抽取5位學(xué)生在一次考試中的數(shù)學(xué)和物理成績(jī),如下表:

(1)求數(shù)學(xué)成績(jī)y對(duì)物理成績(jī)x的線性回歸方程。若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);

(2)要從抽取的這5位學(xué)生中隨機(jī)抽取2位參加一項(xiàng)知識(shí)競(jìng)賽,求選中的學(xué)生的數(shù)學(xué)成績(jī)至少有一位高于120分的概率。(參考公式: 參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某項(xiàng)科研活動(dòng)共進(jìn)行了5次試驗(yàn),其數(shù)據(jù)如下表所示:

特征量

第1次

第2次

第3次

第4次

第5次

555

559

551

563

552

601

605

597

599

598

(1)從5次特征量的試驗(yàn)數(shù)據(jù)中隨機(jī)地抽取兩個(gè)數(shù)據(jù),求至少有一個(gè)大于600的概率;

(2)求特征量關(guān)于的線性回歸方程;并預(yù)測(cè)當(dāng)特征量為570時(shí)特征量的值.

(附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓和點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且與圓相切,圓心的軌跡為曲線

(1)求曲線的方程;

(2)點(diǎn)是曲線軸正半軸的交點(diǎn),點(diǎn)在曲線上,若直線的斜率滿足面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(1)當(dāng)時(shí),求的極值;

(2)令,求函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如下圖,記成績(jī)不低于分者為“成績(jī)優(yōu)良”.

(1)分別計(jì)算甲、乙兩班個(gè)樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更
佳;
(2)甲、乙兩班個(gè)樣本中,成績(jī)?cè)?/span>分以下(不含分)的學(xué)生中任意選取人,求這人來(lái)自不同班級(jí)的概率;

(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)良

成績(jī)不優(yōu)良

總計(jì)

附:

獨(dú)立性檢驗(yàn)臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線ly=3x+3,求:

(1)點(diǎn)P(4,5)關(guān)于直線l的對(duì)稱點(diǎn)坐標(biāo);

(2)直線l1yx-2關(guān)于直線l的對(duì)稱直線的方程;

(3)直線l關(guān)于點(diǎn)A(3,2)的對(duì)稱直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn)的橢圓的兩焦點(diǎn)分別為雙曲線的頂點(diǎn),直線與橢圓交于、兩點(diǎn),且,點(diǎn)是橢圓上異于、的任意一點(diǎn),直線外的點(diǎn)滿足, . 

(1)求點(diǎn)的軌跡方程;

(2)試確定點(diǎn)的坐標(biāo),使得的面積最大,并求出最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案