【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期中考試后,分別從兩個班級中各隨機(jī)抽取名學(xué)生的成績進(jìn)行統(tǒng)計,作出的莖葉圖如下圖,記成績不低于分者為“成績優(yōu)良”.

(1)分別計算甲、乙兩班個樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更
佳;
(2)甲、乙兩班個樣本中,成績在分以下(不含分)的學(xué)生中任意選取人,求這人來自不同班級的概率;

(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

附:

獨(dú)立性檢驗(yàn)臨界值表:

【答案】(1)高效課堂更佳;(2) ;(3)能.

【解析】試題分析:(1)由題意,可根據(jù)莖葉圖所提供數(shù)據(jù),對甲乙兩個班各取前10名的分?jǐn)?shù),并計算其平均值即可,由此可判斷高效課堂更佳;(2)由莖葉圖統(tǒng)計兩個班60分以下的人數(shù),再按古典概型概率的計算公式進(jìn)行運(yùn)算即可;(3)根據(jù)題意,由莖葉圖統(tǒng)計列聯(lián)表中的人數(shù),根據(jù)公式算出,再比對臨界值表,從而可得出結(jié)論.

試題解析:(1)甲班樣本化學(xué)成績前十的平均分為

乙班樣本化學(xué)成績前十的平均分為

;

甲班樣本化學(xué)成績前十的平均分遠(yuǎn)低于乙班樣本化學(xué)成績前十的平均分,大致可以判斷“高效課堂”教學(xué)方式的教學(xué)效果更佳.

(2)樣本中成績分以下的學(xué)生中甲班有人,記為: ,乙班有人,記為: .

則從, 六個元素中任意選個的所有基本事件如下:

,一共有個基本事件,

設(shè)表示“這人來自不同班級”有如下:

,一共有個基本事件,

所以.

(3)

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

根據(jù)列聯(lián)表中的數(shù)據(jù),得的觀測值為

,

∴能在犯錯誤的概率不超過的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).

(1)討論函數(shù)y=f(x)g(x)的奇偶性;

(2)當(dāng)b=0時,判斷函數(shù)y= 在(﹣1,1)上的單調(diào)性,并說明理由;

(3)設(shè)h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).若時方程有兩 個不同的實(shí)根,則實(shí)數(shù)的取值范圍是________;若的值域?yàn)?/span>,則實(shí)數(shù)

取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點(diǎn)在軸上的橢圓的中心是原點(diǎn),離心率為雙曲線離心率的一半,直線被橢圓截得的線段長為.直線 軸交于點(diǎn),與橢圓交于兩個相異點(diǎn),且.

(1)求橢圓的方程;

(2)是否存在實(shí)數(shù),使?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是__________.(寫出所有正確命題的序號)

①已知,“”是“”的充要條件;

②已知平面向量,“”是“”的必要不充分條件;

③已知,“”是“”的充分不必要條件;

④命題:“,使”的否定為:“,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線為參數(shù)),在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.

(1)求曲線的交點(diǎn)的直角坐標(biāo);

(2)設(shè)點(diǎn), 分別為曲線上的動點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上為單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍;

(2)是否存在實(shí)數(shù),使得恒成立且有唯一零點(diǎn),若存在,求出滿足, 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的奇偶性;

(2)對任意兩個實(shí)數(shù),求證:當(dāng)時, ;

(3)對任何實(shí)數(shù), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求證:當(dāng)時, ;

(Ⅲ)若對任意恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案