【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn),為了解教學(xué)效果,期中考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如下圖,記成績(jī)不低于分者為“成績(jī)優(yōu)良”.
(1)分別計(jì)算甲、乙兩班個(gè)樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更
佳;
(2)甲、乙兩班個(gè)樣本中,成績(jī)?cè)?/span>分以下(不含分)的學(xué)生中任意選取人,求這人來(lái)自不同班級(jí)的概率;
(3)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)良 | |||
成績(jī)不優(yōu)良 | |||
總計(jì) |
附:
獨(dú)立性檢驗(yàn)臨界值表:
【答案】(1)高效課堂更佳;(2) ;(3)能.
【解析】試題分析:(1)由題意,可根據(jù)莖葉圖所提供數(shù)據(jù),對(duì)甲乙兩個(gè)班各取前10名的分?jǐn)?shù),并計(jì)算其平均值即可,由此可判斷高效課堂更佳;(2)由莖葉圖統(tǒng)計(jì)兩個(gè)班60分以下的人數(shù),再按古典概型概率的計(jì)算公式進(jìn)行運(yùn)算即可;(3)根據(jù)題意,由莖葉圖統(tǒng)計(jì)列聯(lián)表中的人數(shù),根據(jù)公式算出,再比對(duì)臨界值表,從而可得出結(jié)論.
試題解析:(1)甲班樣本化學(xué)成績(jī)前十的平均分為
;
乙班樣本化學(xué)成績(jī)前十的平均分為
;
甲班樣本化學(xué)成績(jī)前十的平均分遠(yuǎn)低于乙班樣本化學(xué)成績(jī)前十的平均分,大致可以判斷“高效課堂”教學(xué)方式的教學(xué)效果更佳.
(2)樣本中成績(jī)分以下的學(xué)生中甲班有人,記為: ,乙班有人,記為: .
則從, 六個(gè)元素中任意選個(gè)的所有基本事件如下:
,一共有個(gè)基本事件,
設(shè)表示“這人來(lái)自不同班級(jí)”有如下:
,一共有個(gè)基本事件,
所以.
(3)
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)良 | |||
成績(jī)不優(yōu)良 | |||
總計(jì) |
根據(jù)列聯(lián)表中的數(shù)據(jù),得的觀測(cè)值為
,
∴能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“成績(jī)優(yōu)良與教學(xué)方式有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
(1)討論函數(shù)y=f(x)g(x)的奇偶性;
(2)當(dāng)b=0時(shí),判斷函數(shù)y= 在(﹣1,1)上的單調(diào)性,并說(shuō)明理由;
(3)設(shè)h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).若時(shí)方程有兩 個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍是________;若的值域?yàn)?/span>,則實(shí)數(shù)的
取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知焦點(diǎn)在軸上的橢圓的中心是原點(diǎn),離心率為雙曲線離心率的一半,直線被橢圓截得的線段長(zhǎng)為.直線: 與軸交于點(diǎn),與橢圓交于兩個(gè)相異點(diǎn),且.
(1)求橢圓的方程;
(2)是否存在實(shí)數(shù),使?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是__________.(寫出所有正確命題的序號(hào))
①已知,“且”是“”的充要條件;
②已知平面向量,“且”是“”的必要不充分條件;
③已知,“”是“”的充分不必要條件;
④命題:“,使且”的否定為:“,都有且”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線(為參數(shù)),在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.
(1)求曲線與的交點(diǎn)的直角坐標(biāo);
(2)設(shè)點(diǎn), 分別為曲線上的動(dòng)點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在定義域上為單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍;
(2)是否存在實(shí)數(shù),使得恒成立且有唯一零點(diǎn),若存在,求出滿足, 的的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)對(duì)任意兩個(gè)實(shí)數(shù),求證:當(dāng)時(shí), ;
(3)對(duì)任何實(shí)數(shù), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求證:當(dāng)時(shí), ;
(Ⅲ)若對(duì)任意恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com