已知全集U=R,集合A={x|x2-4x>0},B={x||2x-1>3},則(∁UA)∩B=
 
考點:交、并、補集的混合運算
專題:集合
分析:求出A中不等式的解集確定出A,求出B中不等式的解集確定出B,根據(jù)全集U=R求出A的補集,找出A補集與B的交集即可.
解答: 解:由A中的不等式變形得:x(x-4)>0,
解得:x<0或x>4,即A=(-∞,0)∪(4,+∞),
∵全集U=R,
∴∁UA=[0,4],
由B中的不等式解得:x>2,即B=(2,+∞),
則(∁UA)∩B=(2,4].
故答案為:(2,4]
點評:此題考查了交、并、補集的混合運算,熟練掌握各自的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)一天要排語文、數(shù)學、英語、體育、政治、班會六節(jié)課,要求上午的四節(jié)課中,第一節(jié)不排體育課,數(shù)學排在上午;下午兩節(jié)中有一節(jié)排班會課,有多少種不同的排法?(用數(shù)字作答)
(2)有12名劃船運動員,其中3人只會左舷,4人只會劃右弦,其它5人既會劃左舷,又會劃右弦,現(xiàn)要從這12名運動員中,選出6人平均分在左右舷參加劃船比賽,有多少種不同的選法?(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),若對于任意給定的不等實數(shù)x1,x2,不等式(x2-x1)[f(x1)-f(x2)]<0恒成立,則不等式f(x-2)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

中心在坐標原點,焦點在x軸上,長軸長為4,離心率為
1
2
的橢圓方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三角形ABC中,角A.B.C對應的邊分別為a.b.c,已知sin(2A+
π
6
)=
1
2
,b=1,SABC=
3
2
,則
b+c
sinB+sinC
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法:
①“?x∈R,使2x>3x”的否定是“?x∈R,使2x≤3x”;
②若正數(shù)x,y滿足x+3y=5xy,則3x+4y的最小值為
28
5
;
③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是真命題;
④f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),x>0時的解析式是f(x)=2x,則x<0時的解析式為f(x)=-2-x
其中正確的說法是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x∈[-
π
2
π
2
],令A=cos(cosx),B=sin(sinx),則A,B的大小關系為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)是偶函數(shù),且在[0,1]上單調(diào)遞增的是( 。
A、y=cos(x+
π
2
B、y=1-2cos22x
C、y=-x2
D、y=|sin(π+x)|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈R,若函數(shù)f(x)=x2-|2x-a|有四個零點,則關于x的方程ax2+2x+1=0的實數(shù)根的個數(shù)為( 。
A、2個B、1個
C、0個D、與a的取值有關

查看答案和解析>>

同步練習冊答案